Детальная информация

Название Автоматизированный подсчет объектов на изображении с использованием технологии глубокого обучения: магистерская диссертация: 09.04.03
Авторы Егоров Артем Тимурович
Научный руководитель Щукин Александр Валентинович
Организация Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения Санкт-Петербург, 2017
Коллекция Выпускные квалификационные работы ; Общая коллекция
Тематика Нейронные сети ; Автоматизированные системы управления технологическими процессами ; компьютерное зрение ; машинное обучение ; глубокое обучение
УДК 004.032.26(043.3) ; 004.93(043.3)
Тип документа Выпускная квалификационная работа магистра
Тип файла PDF
Язык Русский
Уровень высшего образования Магистратура
Код специальности ФГОС 09.04.03
Группа специальностей ФГОС 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/2/v17-1912
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\39582
Дата создания записи 10.07.2017

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет

Тема работы относится к компьютерному зрению. В магистерской диссертации поставлена задача разработки методики автоматизированного подсчета объектов на изображении и реализации этой методики на примере подсчета сигаретных фильтров. Входными данными для реализуемой системы являются фотографии паллет на производстве сигарет, выполняемые сотрудниками фабрики на мобильные телефоны. В работе рассматривается предметная область глубокого обучения и на основе полученных знаний реализуется глубокая нейронная сеть. Проводится тестирование множества конфигураций нейронных сетей, для выявления сети показывающей наибольшую точность. Работа имеет следующую структуру: вводный раздел, четыре основные главы и заключительная часть. Актуальность работы раскрыта в вводном разделе, где также описаны основная цель и поставленные задачи. В первой главе проводится обзор предметной области. Во второй обзор библиотек глубокого обучения и выбор библиотеки для дальнейшей работы. В третьей главе приведено описание исходных данных, также описан процесс обучения нейронной сети. В четвертой главе приводятся результаты тестирования системы. Основные результаты по работе приводятся в заключении.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи

Количество обращений: 1410 
За последние 30 дней: 0

Подробная статистика