Детальная информация

Название Анализ тональности сообщений социальной сети: выпускная квалификационная работа бакалавра: 09.03.01 - Информатика и вычислительная техника ; 09.03.01_02 - Технологии разработки программного обеспечения
Авторы Мануйлова Мария Игоревна
Научный руководитель Богач Наталья Владимировна
Организация Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения Санкт-Петербург, 2018
Коллекция Выпускные квалификационные работы ; Общая коллекция
Тематика анализ тональности ; словарный подход ; наивный байесовский классификатор ; социальная сеть
Тип документа Выпускная квалификационная работа бакалавра
Тип файла PDF
Язык Русский
Уровень высшего образования Бакалавриат
Код специальности ФГОС 09.03.01
Группа специальностей ФГОС 090000 - Информатика и вычислительная техника
Ссылки Отзыв руководителя ; Рецензия
DOI 10.18720/SPBPU/2/v18-5041
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\57445
Дата создания записи 21.11.2018

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет

В данной работе разработана программа, которая автоматически определяет тональность отзывов, найденных в социальной сети Twitter, о каком-либо событии или мероприятии по введенному ключевому слову. Был проведен обзор предметной области, в результате которого были выделены подходы автоматического определения тональностей и возможные проблемы. Были исследованы особенности сообщений данной социальной сети, а также подробнее были изучены наивный байесовский классификатор и словарный подход.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи
  • ВВЕДЕНИЕ
  • 1. Автоматическое определение тональности
    • 1.1. Подходы автоматического определения тональности
      • 1.1.1. Подход, основанный на правилах
      • 1.1.2. Подход, основанный на использовании словарей тональности
      • 1.1.3. Подход, основанный на машинном обучении с учителем
      • 1.1.4. Подход, основанный на обучении без учителя
    • 1.2. Проблемы автоматического определения тональности
      • 1.2.1. Использование сарказма и иронии
      • 1.2.2. Использование отрицания
      • 1.2.3. Зависимость значения тональности от предметной области
      • 1.2.4. Безграмотные тексты и опечатки
    • 1.3. Вывод
  • 2. Исследование выбранных компонентов
    • 2.1. Особенности сообщений в социальной сети Twitter
      • 2.1.1. Малый размер сообщений
      • 2.1.2. Использование эмотиконов и других специальных символов
      • 2.1.3. Использование сленга, сокращений, наличие грамматических ошибок и опечаток
    • 2.2. Словарный подход анализа тональности
    • 2.3. Наивный байесовский классификатор
  • 3. Реализация автоматического определения тональности
    • 3.1. Используемые библиотеки
      • 3.1.1. tweepy
      • 3.1.2. nltk
      • 3.1.3. pymorphy2
      • 3.1.4. Word2Vec
      • 3.1.5. PyEnchant
      • 3.1.6. tkinter
    • 3.2. Алгоритм работы
      • 3.2.1. Загрузка и считывание словарей
      • 3.2.2. Поиск сообщений по ключевому слову
      • 3.2.3. Определение тональности
      • 3.2.4. Вывод результата
    • 3.3. Тестирование системы
      • 3.3.1. Ввод ключевого слова
      • 3.3.2. Поиск сообщений
      • 3.3.3. Анализ тональности
      • 3.3.4. Вывод результатов
      • 3.3.5. Работоспособность кнопок «Next» и «Exit»
    • 3.4. Результаты
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  • ПРИЛОЖЕНИЕ. КОД ПРОГРАММЫ

Количество обращений: 175 
За последние 30 дней: 2

Подробная статистика