Детальная информация

Название Нейронные сети с онлайн обучением в задаче прогнозирования временных рядов: выпускная квалификационная работа бакалавра: 27.04.03 - Системный анализ и управление ; 27.04.03.01 - Теория и математические методы системного анализа и управления в технических и экономических системах
Авторы Желтоухов Антон Андреевич
Научный руководитель Хлопин Сергей Владимирович
Организация Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения Санкт-Петербург, 2018
Коллекция Выпускные квалификационные работы ; Общая коллекция
Тематика прогнозирование временных рядов ; анализ потоковых данных ; онлайн обучение ; нейронные сети ; OS-ELM
Тип документа Выпускная квалификационная работа бакалавра
Тип файла PDF
Язык Русский
Уровень высшего образования Бакалавриат
Код специальности ФГОС 27.04.03
Группа специальностей ФГОС 270000 - Управление в технических системах
Ссылки Отзыв руководителя
DOI 10.18720/SPBPU/2/v18-6600
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\59595
Дата создания записи 12.12.2018

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет

Цель работы - исследование существующих архитектур нейронных сетей с целью выделения набора структурных свойств для последующего синтеза новой архитектуры нейронной сети с онлайн обучением, направленной на задачу прогнозирования временных рядов. Предмет исследования – Архитектуры нейронных сетей. Мотивацией для применения алгоритмов с онлайн обучением является одна из следующих ситуация: обрабатываемые данные себя непрерывный поток информации, объем данных слишком велик для переучивания, ресурсы памяти слишком ограничены. Такие условия встречаются в различных прикладных задачах, таких как обучение в изменяющихся средах, персонализация модели или обучение на протяжении всей жизни. Нейронной сети представляют по своей структуре идеально подходят для достижения онлайн обучения. кандидаты для обучения постепенной последовательности. В этой работе производиться поиск структурных особенности нейронных сетей, наиболее подходящие для прогнозирования. Также в работе на практическом примере рассматривается одна из передовых архитектур нейронных сетей - Online Sequential Extreme Learning Machine.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи

Количество обращений: 127 
За последние 30 дней: 2

Подробная статистика