С 17 марта 2020 г. для ресурсов (учебные, научные, материалы конференций, статьи из периодических изданий, авторефераты диссертаций, диссертации) ЭБ СПбПУ, обеспечивающих образовательный процесс, установлен особый режим использования. Обращаем внимание, что ВКР/НД не относятся к этой категории.

Детальная информация

Название: Обнаружение неисправности манипулятора с использованием нейронной сети: выпускная квалификационная работа магистра: 09.04.01 - Информатика и вычислительная техника ; 09.04.01_17 - Интеллектуальные системы (международная образовательная программа)
Авторы: Кхухро Сармаст Билавал
Научный руководитель: Потехин Вячеслав Витальевич
Другие авторы: Селиванова Елена Николаевна
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения: Санкт-Петербург, 2019
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: ошибка привода; нейронная сеть; линейный электромеханический привод; диагностика; actuator fault; neural network; linear electro-mechanical actuator; diagnostics
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 09.04.01
Группа специальностей ФГОС: 090000 - Информатика и вычислительная техника
Ссылки: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-5773
Права доступа: Свободный доступ из сети Интернет (чтение, печать, копирование)

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Автоматизация стала необходимостью для любой отрасли, будь то услуги или производство. Это создает необходимость в автоматизации машин и оборудования. Как следствие этой автоматизации, на оборудовании выполняются самые разнообразные действия, и для таких различных задач требуются исполнительные механизмы. Кроме того, эта автоматизация может время от времени выходить из строя и требовать надлежащей системы мониторинга и технического обслуживания. Тем не менее, инструменты, необходимые для выполнения такого мониторинга, как правило, являются дорогостоящими и должны быть тщательно установлены для выполнения надлежащей проверки и баланса. В этом проекте представлена новая методика выполнения систем мониторинга высокого уровня и обнаружения аномалий с использованием данных линейных электромеханических приводов. Предлагаемый нами алгоритм основан на данных и работает с доступными функциями, такими как измерения электрического тока и положения, непосредственно от контроллера системы. Такой подход помогает обнаруживать и диагностировать неисправности, используя системную динамику. Этот подход работает во время переходного и стационарного режима, он также устраняет необходимость в инструментах и датчиках и работает независимо для выполнения обнаружения и диагностики.

Automation has become a need for every industry, be it services or manufacturing. This creates the need for automating the machinery and equipment. As a consequence of this automation, wide variety of actions are performed on the machinery and for such various task’s actuators are required. Furthermore, this automation can become faulty at times and a proper monitoring system and maintenance is required. However, the tools required for performing such monitoring are usually expensive and have to be extensively installed to perform a proper check and balance. This project presents a new technique of performing a high level of monitoring and anomaly detection system using the data from the linear electro-mechanical actuators. Our proposed algorithm is data driven and works on the available features such as electric current and position measurements directly from the controller of the system. This approach helps detect and diagnose faults using the system dynamics. This approach works during the transient and steady-state operation, it further eliminates the need of requiring tools and sensors and works independently to perform the detection and diagnosis.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 26
За последние 30 дней: 3
Подробная статистика