Детальная информация

Название: Предсказательное моделирование с применением анализа больших данных на основе ценностно-ориентированного подхода к диагностике и лечению сердечно-сосудистых заболеваний: выпускная квалификационная работа магистра: направление 38.04.05 Бизнес-информатика ; образовательная программа 38.04.05_04 Технологии управления медицинской организацией
Авторы: Звартау Надежда Эдвиновна
Научный руководитель: Ильин Игорь Васильевич
Другие авторы: Зотова Елизавета Александровна
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт промышленного менеджмента, экономики и торговли
Выходные сведения: Санкт-Петербург, 2019
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: Вычислительные сети — Моделирование; ценностно-ориентированный подход; телемониторирование артериального давление; экономическая эффективность; персонифицированная медицина; информационные технологии в здравоохранении; компьютерное моделирование; prom-анализ; исходы заболеваний; системы поддержки принятия решений; артериальная гипертензия
УДК: 004.942:616-071
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 38.04.05
Группа специальностей ФГОС: 380000 - Экономика и управление
Ссылки: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-6090
Права доступа: Доступ по паролю из сети Интернет (чтение)

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Работа посвящена применению предсказательного моделирования на основе больших данных при сердечно-сосудистых заболеваниях, разработке болезнь-специфичного опросника по пациент-ориентированным конечным точкам для отработки на модели телемониторирования артериального давления ценносто-ориентированного подхода, включающего расчет экономической эффективности метода лечения. На основе базы данных медицинской информационной системы разработаны уникальные словари сопутствующих заболеваний с трехуровневневой иерархической структурой (20 групп, 91 тип и 2019 заболеваний) и сопутствующих препаратов (697 наименования). Отработана методология кластеризации, получены первые результаты по кластерам 20 групп заболеваний по результатам частотного анализа с применением алгоритма Априори и создания Байесовых сетей. Созданы предсказательные модели по ответу на терапию антигипертензивными препаратами в зависимости от профиля пациента и летальности в стационаре при остром коронарном синдроме. Создан и валидирован первый болезнь-специфичный PROM-опросник для больных артериальной гипертензией для оценки пациент-ориентированных конечных точек. При помощи модели телемониторирования артериального давления с использованием PROM-опросника отработаны методы оценки экономической эффективности и доказана «ценность» данного вмешательства.

The project deals with the predictive modelling based on big data analysis in cardiovascular disease, development of disease-specific questionnaire for assessment of patient-reported outcomes with implementation of value based-approach during blood pressure telemonitoring together with estimation of method’s economic efficacy. Data of medical information system served for development of unique dictionaries of concomitant diseases with three-level hierarchical structure (20 groups, 91 types and 2019 diseases) and concomitant medications (697). Methodology of clusterisation was developed and 20 clusters were identified based of Apriori algorithm and Bayesian networks. Predictive models for response to antihypertensive treatment depending on patient’s profile and in-hospital mortality of acute coronary patients were created. First disease-specific PROM-questionnaire for hypertensive patients was developed and validated for assessment of patient-oriented endpoints. Blood pressure telemonitoring with PROM-questionnarie served as a model for assessment of economic efficacy and confirmation of value of this approach.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать
Интернет Авторизованные пользователи СПбПУ Прочитать
Интернет Авторизованные пользователи (не СПбПУ)
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 14
За последние 30 дней: 0
Подробная статистика