Детальная информация

Название: Моделирование нестационарного распределения тепла в цепочке со случайными массами: выпускная квалификационная работа бакалавра: направление 01.03.03 «Механика и математическое моделирование» ; образовательная программа 01.03.03_01 «Механика и математическое моделирование сред с микроструктурой»
Авторы: Резцова Ангелина Максимовна
Научный руководитель: Кузькин Виталий Андреевич
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Выходные сведения: Санкт-Петербург, 2021
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: одномерная цепочка; нелинейная цепочка; случайные массы; распределение температуры; one-dimensional chain; nonlinear chain; random masses; temperature distribution
Тип документа: Выпускная квалификационная работа бакалавра
Тип файла: PDF
Язык: Русский
Уровень высшего образования: Бакалавриат
Код специальности ФГОС: 01.03.03
Группа специальностей ФГОС: 010000 - Математика и механика
Ссылки: Отзыв руководителя; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2021/vr/vr21-4409
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи: ru\spstu\vkr\15682

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

В данной работе рассмотрен подход к моделированию нелинейной бесконечной одномерной цепочки. Включение в модель случайных масс позволяет точнее описывать реальные материалы. Как показали компьютерные эксперименты, выравнивание температуры в цепочке с различными массами происходит быстрее. Варьирование нелинейности влияет на распределение температуры аналогично, как для классической цепочки.

In this paper, we consider an approach to modeling a nonlinear infinite one-dimensional chain. The inclusion of random masses in the model makes it possible to describe real materials more accurately. As shown by computer experiments, the temperature equalization in the chain with different masses is faster. Varying the nonlinearity affects the temperature distribution in the same way as for the classical chain.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Внешние организации №2 Все Прочитать
Внешние организации №1 Все
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
Интернет Авторизованные пользователи (не СПбПУ, №2) Прочитать
Интернет Авторизованные пользователи (не СПбПУ, №1)
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 2
За последние 30 дней: 0
Подробная статистика