Детальная информация

Название: Генерация нетехнического резюме для научно-исследовательских статей на основе нейросетей: выпускная квалификационная работа бакалавра: направление 09.03.01 «Информатика и вычислительная техника» ; образовательная программа 09.03.01_02 «Технологии разработки программного обеспечения»
Авторы: Середин Константин Валерьевич
Научный руководитель: Никитин Кирилл Вячеславович
Другие авторы: Нестеров Сергей Александрович
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения: Санкт-Петербург, 2021
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: автоматическое реферирование; предварительная обработка данных; шифратор-дешифратор модель; transformer архитектура; t5; rouge; automatic summarization; data pre-processing; encoder-decoder model; transformer architecture
Тип документа: Выпускная квалификационная работа бакалавра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 09.03.01
Группа специальностей ФГОС: 090000 - Информатика и вычислительная техника
Ссылки: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2021/vr/vr21-747
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Дополнительно: Новинка

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

В данной выпускной квалификационной работе описан процесс разработки системы для генерации нетехнического резюме из научно -исследовательских статей. В первом разделе изложен обзор подходов в области обработки естественного языка. На основе выбранного подхода рассматриваются преимущества существующих нейронных моделей и выбирается наиболее подходящая в соответствии с приведенными критериями. В последующих разделах описывается процесс разработки системы для решения поставленной задачи. Приводится архитектура выбранной модели, используемые алгоритмы обучения и способы предобработки данных. Далее обосновывается выбор библиотек и описываются этапы установки и настройки среды. В последнем разделе приводится описание методик оценивания и процесса изменения гиперпараметров в модели. В конце раздела приведены сгенерированные резюме и выводы сделанные, на основании оценок, полученных от рецензентов.

This final qualification paper describes the process of developing a system for generating lay summaries from scientific articles. The first section provides an overview of approaches to natural language processing. Based on the chosen approach, the advantages of existing neural models are considered and the most suitable one is selected in accordance with the specified criteria. The following sections describe the process of developing a system to solve this problem. The architecture of the selected model, the training algorithms used, and the data preprocessing methods are described. At the same time, the selected libraries are explained and the steps for installing and configuring the environment are described. The last section describes the evaluation methods and the process of changing the hyperparameters of the model. At the end of the section, the generated lay summaries and conclusions based on the ratings received from the reviewers are presented.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
Интернет Авторизованные пользователи (не СПбПУ)
-> Интернет Анонимные пользователи

Оглавление

  • ВВЕДЕНИЕ
  • 1. Обзор и сравнительный анализ области обработки естественного языка
    • 1.1. Обзор существующих подходов в NLP
      • 1.1.1. Методы основанные на правилах
      • 1.1.2. Традиционное машинное обучение
      • 1.1.3. Специализированные нейронные сети и глубокое обучение
    • 1.2. Обзор существующих подходов автоматического реферирования
      • 1.2.1. Краткое описание архитектуры "Transformer"
    • 1.3. Показатели качества моделей
    • 1.4. Обзор современных моделей
      • 1.4.1. Модель BERT
      • 1.4.2. Модель GPT
      • 1.4.3. Модель BART
      • 1.4.4. Модель PEGASUS
      • 1.4.5. Модель ProphetNet
      • 1.4.6. Модель T5
    • 1.5. Сравнительный анализ моделей
  • 2. Описание подхода для решения поставленной задачи
    • 2.1. Подходы и алгоритмы предобработки
    • 2.2. Описание модели
      • 2.2.1. Эмбеддинг
      • 2.2.2. Архитектура модели
      • 2.2.3. Векторное представление
    • 2.3. Показатели качества
  • 3. Реализация системы генерации нетехнического резюме
    • 3.1. Выбор инструментальных средств
    • 3.2. Установка и настройка среды
    • 3.3. Набор данных
    • 3.4. Предобработка и преобразование текста
    • 3.5. Создание модели
    • 3.6. Алгоритмы обучения
      • 3.6.1. Обучение модели
      • 3.6.2. Настройка модели
    • 3.7. Использование модели
  • 4. Тестирование и анализ результатов
    • 4.1. Программа тестирования
    • 4.2. Методика тестирования
    • 4.3. Выбор наиболее подходящего подхода
    • 4.4. Результат генерации
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  • ПРИЛОЖЕНИЕ 1. Подготовка среды
  • ПРИЛОЖЕНИЕ 2. Сравнение методов экстракции
  • ПРИЛОЖЕНИЕ 3. Предварительная обработка текста
  • ПРИЛОЖЕНИЕ 4. Представление данных в формате TSV
  • ПРИЛОЖЕНИЕ 5. Создание задачи
  • ПРИЛОЖЕНИЕ 6. Создание модели
  • ПРИЛОЖЕНИЕ 7. Обучение и экспорт модели
  • ПРИЛОЖЕНИЕ 8. Использование модели

Статистика использования

stat Количество обращений: 4
За последние 30 дней: 1
Подробная статистика