Таблица | Карточка | RUSMARC | |
Разрешенные действия: –
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа: Анонимные пользователи Сеть: Интернет |
Аннотация
Данная работа посвящена практическому применению рекуррентной нейронной сети при работе с текстом, который влияет на цены акций фондового рынка. В работе рассмотрен подход к реализации такой нейронной сети и оценка полученных с помощью нее результатов. Цель работы – моделирование системы прогнозирования направления изменения цен котировок компаний сектора информационных технологий и сектора нефти и газа. В ходе работы были рассмотрены различные способы реализации предсказания направления движения цен акций фондового рынка, разобраны реализации в реальных работах. На основе них был предложен и реализован алгоритм на основе рекуррентной нейронной сети и анализа новостных заголовков, отобранных по данным изменения цен акций. Модель реализована на языке Python с подключением дополнительных библиотек. Разработанная программа продемонстрировала точность выше, чем у программ-аналогов, использующих схожие подходы, благодаря более тщательному отбору входных данных и небольших последовательностей слов. Реализованная система была рассмотрена для двух секторов фондового рынка, но может быть применима и для остальных.
This master's thesis covers the practical application of recurring neural network when working with text that affects stock prices of the stock market. The paper considers an approach to the implementation of such a neural network and an assessment of the results obtained with its help. The goal of this work is to develop a system for predicting the direction of stock price changes of companies in IT sector and energy sector. In the course of the work, various approaches of implementation the prediction of stock market prices’ trend were considered and the realizations in real works were analyzed. On this basis, an algorithm was proposed and implemented based on a recurrent neural network and analysis of news headlines selected according to the data of stock prices’ changes. The model is implemented using Python with the inclusion of additional libraries. The developed program has demonstrated higher accuracy than analog programs using similar approaches, due to more thorough input data pre-processing and small sequences of words. The implemented system was considered for two sectors of the stock market, but it can be applied to the other sectors.
Права на использование объекта хранения
Место доступа | Группа пользователей | Действие | ||||
---|---|---|---|---|---|---|
Локальная сеть ИБК СПбПУ | Все |
![]() ![]() ![]() |
||||
Внешние организации №2 | Все |
![]() |
||||
Внешние организации №1 | Все | |||||
Интернет | Авторизованные пользователи СПбПУ |
![]() ![]() ![]() |
||||
Интернет | Авторизованные пользователи (не СПбПУ, №2) |
![]() |
||||
Интернет | Авторизованные пользователи (не СПбПУ, №1) | |||||
![]() |
Интернет | Анонимные пользователи |
Статистика использования
|
Количество обращений: 6
За последние 30 дней: 0 Подробная статистика |