Детальная информация

Название Нахождение оптимальных гиперпараметров для моделей машинного обучения добывающих скважин: выпускная квалификационная работа бакалавра: направление 01.03.03 «Механика и математическое моделирование» ; образовательная программа 01.03.03_03 «Математическое моделирование процессов нефтегазодобычи»
Авторы Кукуев Артём Игоревич
Научный руководитель Симонов Максим Владимирович
Организация Санкт-Петербургский политехнический университет Петра Великого. Физико-механический институт
Выходные сведения Санкт-Петербург, 2024
Коллекция Выпускные квалификационные работы; Общая коллекция
Тематика машинное обучение; методы оптимизации; гиперпараметры; Python; доверительные интервалы; machine learning; optimization methods; hyperparameters; confidence intervals
Тип документа Выпускная квалификационная работа бакалавра
Тип файла PDF
Язык Русский
Уровень высшего образования Бакалавриат
Код специальности ФГОС 01.03.03
Группа специальностей ФГОС 010000 - Математика и механика
DOI 10.18720/SPBPU/3/2024/vr/vr24-3119
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи ru\spstu\vkr\30143
Дата создания записи 10.07.2024

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет

Данная работа посвящена нахождению оптимальных гиперпараметров для моделей машинного обучения добывающих скважин. В рамках исследования рассматривались 4 метода оптимизации гиперпараметров моделей: Grid Search, Random Search, CmaEsSampler (CMA-ES) из библиотеки Optuna и Tree-structured Parzen Estimator (TPE) из библиотеки Hyperopt. Был проведен анализ данных с месторождений, и построены доверительные интервалы значений гиперпараметров для каждой из представленных моделей. Результаты представлены в виде графиков и таблиц, сравнивающих точность предсказанных значений целевой переменной и время, затраченное на работу каждого из методов.

This work is devoted to finding optimal hyperparameters for machine learning models of producing wells. The study considered 4 methods for optimizing hyperparameters of models: Grid Search, Random Search, CmaEsSampler (CMA-ES) from the Optuna library and Tree-structured Parzen Estimator (TPE) from the Hyperopt library. The analysis of data from the deposits was carried out, and confidence intervals of hyperparameter values for each of the presented models were constructed. The results are presented in the form of graphs and tables comparing the accuracy of the predicted values of the target variable and the time spent on the operation of each of the methods.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика