На правах рукописи

Альван Хассан М.

Динамика и управление движением робототехнических систем с избыточными входами

Специальность 05.02.18 – Теория механизмов и машин

Автореферат

Диссертации на соискание ученой степени кандидата технических наук

Санкт-Петербург 2003

Работа выполнена на кафедре «Теория механизмов и машин» Санкт-Петербургского государственного политехнического университета.

Научный руководитель: доктор технических наук, профессор

Каразин В.И.

Официальные оппоненты: доктор технических наук, профессор,

засл. деятель науки РФ Челпанов И.Б., главный конструктор-директор по науке ОАО КУЛОН, кандидат технических наук,

с.н.с. Красильщиков М.Я.

Ведущее предприятие: ЦНИИ РТК, СПБ.

Зашита диссертации состоится2003 года в ... часов на заседании диссертационного Совета Д212.229.12 при Санкт-Петербургском государственном политехническом университете, по адресу 195251, Санкт-Петербург, Политехническая ул., 29, 1 учебный корпус, ауд. 41.

С диссертацией можно ознакомится в фундаментальной библиотеке Санкт – Петербургского государственного политехнического университета.

Автореферат разослан 2003года.

Ученый секретарь Диссертационного совета Д212.229.12 к.т.н., доц.

А.Н. Евграфов

1.ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность темы. За последние десятилетия появились и нашли широкое распространение так называемые системы с параллельной структурой. Речь идет о робототехнических системах, в которых кинематическая схема используемого механизма является замкнутой. Такое построение механической системы обеспечивает более высокую по сравнению с роботами традиционной структуры жесткость всей конструкции. При этом рабочая нагрузка более равномерно распределена между приводами. Благодаря повышению низшей собственной частоты в более благоприятных условиях работает система автоматического управления.

Существует, однако, специфическая особенность таких особого механизмов, требующая внимания конструкторов разработчиков систем управления. Как известно, замкнутые механизмы при одной и той же совокупности входных переменных (обобщенных координат) могут занимать различные положения в пространстве (имеют несколько различных конфигураций). При проектировании механизмов со многими степенями подвижности осуществить конструктивны запрет конфигурации переход из одной В другую, как правило, затруднительно. Положение, при котором две различные конфигурации совпадают, называется особым или сингулярным.

В общем случае можно утверждать, что в особом положении механизм приобретает дополнительную локальную степень подвижности. При этом количество входов механизма остается прежним, т.е. число степеней подвижности становится больше числа входов. Такой механизм не в состоянии выполнять свои функции в силу следующих причин:

- малые перемещения механизма не заданы однозначно малыми изменениями входных обобщенных координат.
- обобщенные движущие силы не могут уравновесить рабочую нагрузку, приложенную к выходным звеньям механизма.
- при заторможенных двигателях жесткость механизма по отношению к рабочей нагрузке оказывается равной нулю.
- низшая собственная частота механической системы при заторможенных двигателях и упругих приводах равна нулю.

Таким образом, проход механизма через особое положение невозможен.

В связи с этим возникает задача исследовать поведение замкнутого рычажного механизма с несколькими степенями подвижности в окрестности особого положения, оценить степень близости текущего положения к особому положению и найти способ избегать особых положений.

Цель работы:

- Исследование геометрии, кинематики и динамики манипулятора типа платформы Стюарта.
- Разработка критериев качества конфигураций манипулятора, характеризующих близость конфигурации к особому положению.
- Разработка методов управления манипулятором, обеспечивающих обход особых положений.

Основные задачи исследования.

- 1. Составление уравнения геометрического анализа манипулятора.
- 2. Решение уравнений геометрического анализа манипулятора, включая решение прямой и обратной задач геометрического анализа.
- 3. Исследование точности позиционирования платформы.
- **4.** Исследование скоростей и ускорений точек манипулятора, а также угловых скоростей и ускорений его звеньев.
- 5. Исследование динамики манипулятора с жесткими звеньями.
- **6.** Исследование кинематики и динамики манипулятора при учете упругости звеньев.
- 7. Определение собственных частот манипулятора при закрепленных двигателях и упругих передаточных механизмах.
- 8. Разработка критериев качества конфигураций манипулятора, основанных на оценке близости текущего положения к особому.
- 9. Решение задач управления движением манипулятора, обеспечивающее прохождения особых положений. В основе методов решения этих задач лежит использование избыточных входов.

Методы исследования. Для исследования кинематики, динамики и управления движением манипулятора были использованы методы теории механизмов и машин, теории колебаний, аналитической механики, теории автоматического управления, численные методы решения дифференциальных уравнений на ЭВМ, а также программы «Mathcad» и «Model Vision Studium».

Научная новизна.

1. Разработан метод решения прямой и обратной задачи геометрического анализа манипулятора типа платформы Стюарта.

- 2.На основе исследования кинематики и динамики манипулятора типа палатформы Стюарта созданы метод и программа расчета точности позиционирования платформы, а также метод и программа определения обобщенных движущих сил.
- 3.На основе исследований кинематики и динамики манипулятора с упругими звеньями созданы программы расчетов статических ошибок и собственных частот манипулятора с упругими приводами.
- 4.Построены эффективные критерии близости положения манипулятора к особому.
- 5.Предложен метод управления манипулятором, учитывающий вышеназванные критерии, использующий дополнительные (избыточные) входы для обхода особых положений.

Апробация работы.

Основные положения диссертационной работы докладывались на научных кафедры «TMM», научных конференций, семинарах также на проводившихся Москве И Санкт-Петербург. По результатам диссертационной работы опубликовано 3 печатных работы.

Практическая ценность работы.

- 1. Разработаны алгоритм решения прямой задачи геометрического анализа манипулятора типа платформы Стюарта.
- 2.Созданы алгоритмы решения задач кинематического и динамического исследования манипулятора типа платформы Стюарта с жесткими и упругими звеньями.
- 3.Предложен метод управления пространственным манипулятором типа платформы Стюарта, предполагающий увеличение числа опор до восьми, обеспечивающий обход особых положений и оптимизацию законов движения манипулятора по некоторым критериям динамического характера.

Структура и объем диссертации.

Диссертация состоит из введения, пяти глав, основных результатов и выводов, списка литературы и приложений. Полный объем диссертации (183) страницы, включающий (35) рисунков, (18) таблиц.

2. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ.

Во введении обоснована актуальность работы, сформулированы цель диссертационной работы, основные положения, выносимые на защиту, показана научная новизна и практическая ценность результатов работы.

В первой главе приведен обзор развития робототехнических систем и, в частности, систем платформенного типа. Показано, что наиболее

существенный недостаток манипуляторов такого типа — это наличие особых положений. Рассмотрены некоторые используемые в литературе критерии близости положения замкнутого механизма к особому. Дан обзор работ, посвященных вопросами динамики и управления робототехническими системами, в том числе манипуляторами типа платформы Стюарта.

Во второй главе рассмотрена структура, геометрия и кинематика манипулятора типа платформы Стюарта. Его кинематическая схема изображена на рис. 1.

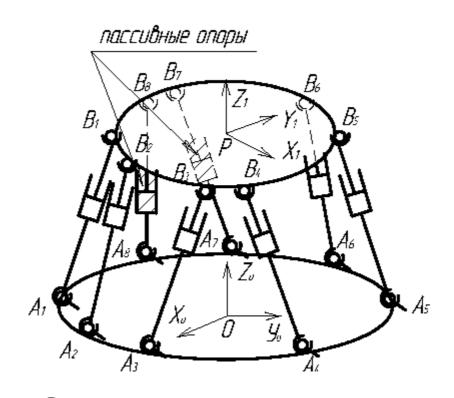


Рис. 1 Кинематическая схема манипулятора

В ней кинематические пары, связывающие платформу 1 со звеньями «ног» с нечетными номерами, суть трехподвижные сферические шарниры. Кинематические пары, соединяющие основание 0 со звеньями «ног» с четными номерами, суть двухподвижные вращательные пары, исключающие вращение звеньев вокруг собственной продольной оси. Кроме шести активных ног платформа соединена с основанием еще и произвольным количествам пассивных ног, выполненных так же, как и активные, но не соединенных с двигателями. Каждая пассивная нога представляет собой группу Ассура, имея в своем составе два звена и по

одной одно-, двух- и трехподвижной паре. Добавление таких ног не меняет числа степеней подвижности механизма.

Структура такого механизма с двумя дополнительными ногами приведена на рис. 2.

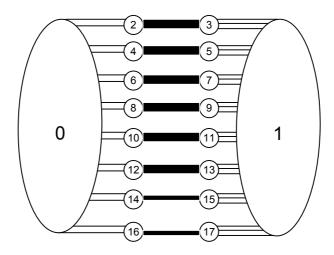


Рис. 2 Структура манипулятора

Число степеней подвижности механизма, подсчитанное по структурной формуле Сомова - Малышева равно:

$$w = 13 \times 6 - 3 \times 6 - 5 \times 6 - 4 \times 6 = 6$$
.

Прямой задачей геометрического анализа механизма платформы является определение функций положения, т.е. определение координат полюса платформы и углов ее ориентации относительно неподвижной системы осей как функций обобщенных координат. Такая задача имеет решение, хотя и неединственное, при любых конструктивно допустимых значениях обобщенных координат.

Обратная задача геометрии механической системы платформы заключается в определении значений обобщенных координат, обеспечивающих заданные значения координат полюса и углов ориентации платформы.

Целью исследования кинематики является определение кинематических параметров механизма, т.е. определение скоростей и ускорений его точек, а также угловых скоростей и ускорений подвижной платформы как функций обобщенных координат и обобщенных скоростей.

Составление уравнений геометрии. При составлении уравнений геометрии манипулятора предполагалось, что центры шарниров, связывающих «ноги»

со стойкой (точки A_i) заданы столбцами координат этих точек в неподвижной системе осей

$$r_{Ai} = \begin{pmatrix} (0) & (0) & (0) \\ x_{Ai} & y_{Ai} & z_{Ai} \end{pmatrix}^{T}, i = 1, 2, ..., m .$$
 (1)

Центры шарниров, связывающих «ноги» с платформой (точки B_i) заданы столбцами координат этих точек в системе координат, связной с платформой

$$r_{Bi} = \begin{pmatrix} (1) & (1) & (1) \\ x_{Bi} & y_{Bi} & z_{Bi} \end{pmatrix}^{T}, i = 1, 2, ..., m$$
 (2)

Матрица направляющих косинусов осей платформы относительно осей неподвижной системы обозначена через $A_{0.1}$:

$$A_{0,1} = \begin{pmatrix} \cos(\psi)\cos(\varphi) - \sin(\psi)\cos(\theta)\sin(\varphi) & -\cos(\psi)\sin(\varphi) - \sin(\psi)\cos(\theta)\cos(\varphi) & \sin(\psi)\sin(\theta) \\ \sin(\psi)\cos(\varphi) + \cos(\psi)\cos(\theta)\sin(\varphi) & -\sin(\psi)\sin(\varphi) + \cos(\psi)\cos(\theta)\cos(\varphi) & -\cos(\psi)\sin(\theta) \\ \sin(\theta)\sin(\varphi) & \sin(\theta)\cos(\varphi) & \cos(\theta) \end{pmatrix}$$

Таким образом, уравнения геометрического анализа можно записать в форме

$$\Psi_{\Pi i} = r_0^T r_0 + r_{Bi}^T r_{Bi} + r_{Ai}^T r_{Ai} + 2r_0^T A_{0.1} r_{Bi} - 2r_{Ai}^T A_{0.1} r_{Bi} - 2r_0^T r_{Ai} - q_i^2 = 0; i = 1,..,6$$
(3)

В дальнейшем будем пользоваться такими обозначениями:

 $\rho = (x \ y \ z \ \psi \ \theta \ \varphi)^T$ - столбец геометрических параметров, определяющих положение платформы;

 $q = (q_1 \quad q_2 \quad \dots \quad q_6)^T$ - столбец обобщенных координат;

$$\Psi_{\Pi}(q,\rho) = \left[\Psi_{\Pi 1}(q_1, x, ..., \varphi) \quad \Psi_{\Pi 2}(q_2, x, ..., \varphi) \quad . \quad . \quad \Psi_{\Pi 6}(q_6, x, ..., \varphi) \right]^T. \tag{4}$$

В этих обозначениях система уравнений (3) перепишется в форме:

$$\Psi_{\prod}(q,\rho) = 0 \tag{5}$$

Соотношения (5) можно рассматривать как неявное задание функций положения. Таким образом, решение прямой геометрической задачи сводится к разрешению системы (5) относительно величин $x, y, z, \psi, \theta, \varphi$. Пусть в некоторой точке пространства обобщенных координат решение прямой задачи геометрического анализа известно и требуется найти решение этой задачи в близкой точке этого пространства. Решение в предыдущей точке рассматриваем как нулевое приближение, полагая

$$\rho^{(0)} = \rho + \delta \rho^{(0)},$$

где ρ - точное решение задач геометрического анализа, а $\delta \rho^{(0)}$ малое отличие точного решения от известного решения в близком положении. Подставив в уравнения (5) величину $\rho^{(0)}$, получим :

$$\Psi_{\prod}(q, \rho + \delta \rho^{(0)}) = \Psi_0 \neq 0$$

Раскладывая функцию $\Psi_{\Pi}(q,\rho^{(0)})$ в ряд Тэйлора в окрестности точного решения, находим:

$$\Psi_{\Pi}(q,\rho) + \frac{\partial \Psi_{\Pi}}{\partial \rho} \delta \rho^{(0)} + o(\delta \rho^{(0)}) = \Psi_{0}.$$

Пренебрегая $o(\delta \rho^{(0)})$, получаем систему линейных алгебраических уравнений относительно $\delta \rho^{(0)}$.

$$\frac{\partial \Psi_{\Pi}}{\partial \rho} \delta \rho^{(0)} = \Psi_0.$$

Отсюда:

$$\delta \rho^{(0)} = \left(\frac{\partial \Psi_{\Pi n}}{\partial \rho}\right)^{-1} \Psi_{0}.$$

Поскольку при решении задачи мы пренебрегли слагаемыми $o(\delta \rho^{(0)})$, решение является приближенным и поэтому $\rho^{(1)} = \rho^{(0)} - \left(\frac{\partial \Psi_\Pi}{\partial \rho}\right)^{-1} \Psi_0$ является не точным решением системы уравнений (5), а лишь первым приближением. Можно, однако, построить рекуррентную процедуру решения:

$$\rho^{(k+1)} = \rho^{(k)} - \left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \Psi_{\Pi} \left(q, \rho^{(k)}\right).$$

Описания процедура определения решения системы (5) известна как метод Ньютона и допускает множество модификаций, ускоряющих сходимость и сокращающих количество необходимых вычислений. Известно, однако, что процедура не сходится, если в окрестности решения определитель матрицы $\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)$ обращается в 0, т.е. в окрестности особого положений манипулятора.

В качестве примера рассмотрен манипулятор с известными параметрами. Предполагается, что он перемещается из положения 1 в положение 4, проходя при этом через промежуточные положения 2,3. В каждом положении задан набор обобщенных координат q_i . В результате решения прямой задачи находим в каждом положении координаты полюса платформы и углы ее ориентации, а затем, путем решения обратной задачи, соответствующий этим координатам набор обобщенных координат q_i^* и погрешности $no2 = \frac{q_i^* - q_i}{q_i}$.

Таб.	1
------	---

Обобщ.	погрешности					
координат	Полож.1	Полож.2	Полож.3	Полож.4		
q1	4.4E-6			3.001		
q2	3.4E-4	2.8E-4	2.1E-4	3.183		
q3	1.8E-4	1.7E-4	1.2E-4	4.056		
q4	5.9E-4	5.0E-4	3.8E-4	3.868		
q5	3.5E-4	1.8E-2	2.1E-2	4.698		
q6	6.4E-4	4.4E-2	5.1E-4	7.111		

В таблице 1 показано, что в окрестности особого положения (положение 4) погрешности намного больше, чем в других положениях, т.е. в особом положении прямая задача геометрии манипулятора не имеет решения.

Исследование геометрических ошибок. Неточность изготовления механизма проявляется в отклонении точек A_i и B_i от их номинальных положений. Эти ошибки определяются новым заданием столбцов координат точек A_i и B_i . Несовпадение характеристик двигателей с номинальными и погрешности изготовления передаточных механизмов вызывают отклонения обобщенных координат q_i , i = 1,2,...,6 от программных значений. Эти отклонения Δr_{Ai} , Δr_{Bi} , Δq_i вызывают геометрические ошибки по координате и ориентации полюса подвижной платформы. Уравнения геометрии манипулятора можно записать в форме

$$\Psi_{\Pi}(q + \Delta q, \rho + \Delta \rho, r_A + \Delta r_A, r_B + \Delta r_B) = 0 \tag{6}$$

Раскладывая функцию в левой части уравнения (6) в ряд Тэйлора в окрестности программных значений аргументов и учитывая слагаемые не выше первого порядка малости, получаем:

$$\Psi_{\prod}(q,\rho,r_A,r_B) + \frac{\partial \Psi_{\prod}}{\partial q} \Delta q + \frac{\partial \Psi_{\prod}}{\partial r_A} \Delta r_A + \frac{\partial \Psi_{\prod}}{\partial r_B} \Delta r_B + \frac{\partial \Psi_{\prod}}{\partial \rho} \Delta \rho = 0 \; .$$

Тогда:

$$\delta \rho = -\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \left(\frac{\partial \Psi_{\Pi}}{\partial q} \Delta q + \frac{\partial \Psi_{\Pi}}{\partial r_{A}} \Delta r_{A} + \frac{\partial \Psi_{\Pi}}{\partial r_{B}} \Delta r_{B}\right). \tag{7}$$

Из этого выражения следует, что при приближении механизма к особому положению ошибки позиционирования, независимо от вызывающих их причин, неограниченно растут. Таким образом, с точки зрения точности, в окрестности особого положения механизм становится неработоспособен. В

качестве примера рассмотрен манипулятор с известными параметрами в предположении, что подвижная платформа движется из точки 1 (начало движения) в точку 6 (конец движения), проходя при этом через промежуточные точки 2,3,4,5. В каждой точке заданы входные координаты манипулятора q_i , i=1,2,...,6, и выходные координаты манипулятора (координаты полюса x,y,z и эйлеровы углы ориентации платформы ψ,θ,φ).

В первом варианте заданны только отклонения обобщенных координат от программных значении. Тогда эти отклонения вызывают геометрические ошибки по координате и ориентации полюса подвижной платформы. Результаты расчета геометрических ошибок показаны в таблице 2.

						Tao. 2
точка	1	2	3	4	5	6
ошибка						
$(\delta \rho)^2$	1.351	1.822	6.959	1.059	5.821	6.191
-	E-6	E-6	E-6	E8	E-7	E-7

Определение скоростей и ускорений точек и угловых скорости и ускорения платформы. Для определения проекций скорости произвольной точки платформы манипулятора на оси неподвижной системы отсчета достаточно продифференцировать по времени соотношения (3). В самом деле, дифференцируя это уравнение, получаем

$$\frac{d\Psi_{\prod}}{dt} = \frac{\partial \Psi_{\prod}}{\partial \rho} \dot{\rho} + \frac{\partial \Psi_{\prod}}{\partial q} \dot{q} = 0,$$

откуда (в случае, если положение не является особым) получаем:

$$\dot{\rho} = -\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \left(\frac{\partial \Psi_{\Pi}}{\partial q}\right) \dot{q} \tag{8}$$

Линейная скорость полюса платформы определяется первыми тремя элементами столбца $\dot{\rho}$, а для определения угловой скорости платформы заметим, что (см. Рис.3)

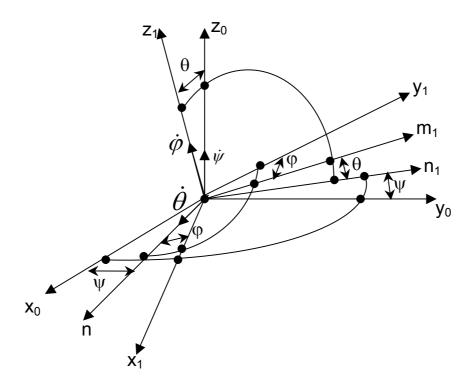


Рис. 3 Эйлеровые углы поворота от неподвижных осей к осям платформы.

$$\overline{\omega}_{1} = \dot{\psi}.\overline{k}_{0} + \dot{\theta}.\overline{n} + \dot{\varphi}.\overline{k}_{1}, \tag{9}$$

причем \overline{k}_0 — орт оси Oz_0 неподвижной системы координат, \overline{n} — орт линии узлов On и \overline{k}_1 — орт оси Oz_1 , связанной с платформой. Для определения проекций угловой скорости $\overline{\omega}_1$ на оси неподвижной системы координат необходимо спроецировать на эти оси орты \overline{n} и \overline{k}_1 . Имеем:

$$\begin{split} \overline{n} &= \overline{i}_0 \cos \psi + j_0 \sin \psi \\ \overline{k}_1 &= \overline{k}_0 \cos \theta - j_0 \sin \theta \cos \psi + \overline{i}_0 \sin \theta \sin \psi \end{split}.$$

Тогла

$$\omega_1 = \bar{i}_0 \left(\dot{\theta} \cos \psi + \dot{\phi} \sin \psi \right) + \bar{j}_0 \left(\dot{\theta} \sin \psi - \dot{\phi} \cos \psi \sin \theta \right) + \bar{k}_0 \left(\dot{\psi} + \dot{\phi} \cos \theta \right)$$
 Takum

образом

$$\omega_{1}^{(0)} = \begin{pmatrix} \dot{\theta} \cos \psi + \dot{\varphi} \sin \psi \\ \dot{\theta} \sin \psi - \dot{\varphi} \sin \theta \cos \psi \\ \dot{\psi} + \dot{\varphi} \cos \theta \end{pmatrix}.$$

Введем столбец $V^{(0)} = \begin{pmatrix} \dot{x} & \dot{y} & \dot{z} & \omega_{x}^{(0)} & \omega_{y}^{(0)} & \omega_{z}^{(0)} \end{pmatrix}^T$ и матрицу $K_0 = \begin{pmatrix} E_3 & 0 \\ 0 & \Gamma_0 \end{pmatrix}$, причем

$$\Gamma_0 = \begin{pmatrix} 0 & \cos \psi & \sin \psi \\ 0 & \sin \psi & -\sin \theta \cos \psi \\ 1 & 0 & \cos \theta \end{pmatrix}. \ \mathbf{B} \ \mathsf{ЭТИХ} \ \mathsf{ОбозначенияX}$$

$$V^{(0)} = K_0 \dot{\rho} = -K_0 \left(\frac{\partial \Psi_{\Pi}}{\partial \rho} \right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial q} \dot{q}$$
 (10)

Для определения проекций ускорения произвольной точки подвижной платформы манипулятора на оси неподвижной системы отсчета достаточно продифференцировать по времени соотношение (5). В результате получаем:

$$\frac{d\Psi_{\Pi}}{dt} = \frac{\partial \Psi_{\Pi}}{\partial \rho} \dot{\rho} + \frac{\partial \Psi_{\Pi}}{\partial q} \dot{q} = 0.$$

В случае, если $A = \frac{\partial \Psi_{\Pi}}{\partial \rho}$ и $B = \frac{\partial \Psi_{\Pi}}{\partial a}$, тогда получаем:

$$\frac{d^2\Psi_{\Pi}}{dt^2} = \dot{A}\dot{\rho} + A\ddot{\rho} + \dot{B}\dot{q} + B\ddot{q} = 0,$$

отсюда:

$$\ddot{\rho} = -A^{-1} \left(\dot{A} \dot{\rho} + B \ddot{q} + \dot{B} \dot{q} \right),$$

$$\ddot{\rho} = -\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \left\{ \sum_{l=1}^{6} \frac{\partial}{\partial \rho_{l}} \left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right) \dot{\rho} \dot{\rho}_{l} + \frac{\partial \Psi_{\Pi}}{\partial q} \ddot{q} + \sum_{l=1}^{6} \frac{\partial}{\partial q_{l}} \left(\frac{\partial \Psi_{\Pi}}{\partial q}\right) \dot{q} \dot{q}_{l} \right\} .$$

Линейное ускорение полюса платформы определяется первыми тремя элементами столбца $\ddot{\rho}$, а для определения углового ускорения платформы обратимся к рис. (3). Угловое ускорение платформы определяется соотношением:

$$\begin{split} \overline{\varepsilon}_1 &= \overline{i}_0 \Big(\ddot{\theta} \cos \psi + \ddot{\phi} \sin \psi \sin \theta - \dot{\psi} \dot{\theta} \sin \psi + \dot{\phi} \dot{\psi} \cos \psi \sin \theta + \dot{\phi} \dot{\theta} \sin \psi \cos \theta \Big) \\ &+ \overline{j}_0 \Big(\ddot{\theta} \sin \psi - \ddot{\phi} \cos \psi \sin \theta + \dot{\theta} \dot{\psi} \cos \psi + \dot{\phi} \dot{\psi} \sin \psi \sin \theta - \dot{\phi} \dot{\theta} \cos \psi \cos \theta \Big) \\ &+ \overline{k}_0 \Big(\ddot{\psi} + \ddot{\phi} \cos \theta - \dot{\phi} \dot{\theta} \sin \theta \Big) \end{split}$$

В конце главы дан пример определения скоростей точек манипулятора. Полученные результаты показывают, что при приближении к особому положению неограниченно возрастают скорости платформы.

В третьей главе манипулятор рассматривается как механическая система с жёсткими звеньями. Все действующие в манипуляторе силы разделили на активные и реакции связи. При динамическом исследовании манипулятора для определения движущих сил использовалось общее уравнение динамики (уравнение Даламбера — Лагранжа). Поэтому введены в рассмотрение силы и моменты сил инерции s-го звена, определяемые выражением:

$$\overline{\Phi}_S = -m_S \overline{W}_{CS} \,, \tag{11}$$

где \overline{W}_s - ускорение центра масс s-го звена. Главный момент сил инерции s-го звена относительно начала s-й системы координат O_s может быть записан в форме:

$$\overline{L}_{0s} = -\overline{J}_{cs}.\overline{\varepsilon}_{s} - \overline{\omega}_{s} \times \overline{J}_{cs}.\overline{\omega}_{s} + \overline{r}_{cs} \times \overline{\Phi}_{cs}, \qquad (12)$$

где \overline{J}_{cs} — тензор инерции s-го звена относительно центра масс; $\overline{\omega}_s$ — угловая скорость s-го звена; $\overline{\varepsilon}_s$ — угловое ускорение s-го звена; \overline{r}_{cs} — радиус вектор центра масс s-го звена относительно s-й й системы координат. Главный вектор всех активных сил и сил инерции, приложенных к платформе обозначен через:

$$\overline{F}_1 = \overline{G}_1 + \overline{P}_1 + \overline{\Phi}_1 , \qquad (13)$$

а главный момент всех активных сил и сил инерции, приложенных к 1-му звену, относительно начала координат 1-й системы O_1 через:

$$\overline{M}_{01} = \overline{M}_{01} \left(\overline{G}_1 \right) + \overline{M}_{01} \left(\overline{P}_1 \right) + \overline{L}_{01}. \tag{14}$$

Тогда сумма работ всех активных сил и сил инерции на любом (малом) возможном перемещении запишется в форме:

$$\delta A_1 = \overline{F}_1 \cdot \delta \overline{r}_{c1} + \overline{M}_{01} \cdot \delta \overline{\gamma}_1, \tag{15}$$

здесь $\delta \bar{r}_{c1}$ - возможное малое перемещение центра масс платформы, а $\delta \bar{\gamma}_1$ - вектор возможного малого поворота платформы. В матричной форме столбец проекций вектора $\delta \bar{\gamma}_1$ на оси 1-й системы координат представим в форме

$$\delta \gamma_1^{\left(1\right)} = \Gamma_1 \delta \Delta_1^{\left(1\right)} \qquad \qquad \Pi \text{ричём} \qquad \qquad \Gamma_1 = \begin{pmatrix} \sin \varphi_1 \sin \theta_1 & \cos \varphi_1 & 0 \\ \sin \theta_1 \cos \varphi_1 & -\sin \varphi_1 & 0 \\ \cos \theta_1 & 0 & 1 \end{pmatrix},$$

 $\delta\Delta^{\left(1\right)}=egin{pmatrix}\delta\psi_1\\\delta\theta_1\\\delta\varphi_1\end{pmatrix}$, Таким образом:

$$\delta A_1 = \left(F_1^{(1)}\right)^T \delta r_{c1}^{(1)} + \left(M_{01}^{(1)}\right)^T \Gamma_1 \delta \Delta^{(1)}, \tag{16}$$

где $F_1^{(1)}$ - столбец проекций вектора \overline{F}_1 на оси первой системы, $M_{01}^{(1)}$ - столбец проекций вектора \overline{M}_{01} на оси той же системы. Аналогично, столбец $\delta r_{c1}^{(1)}$ содержит проекции вектора $\delta \overline{r}_{c1}$ на оси первой системы.

Введем столбцы
$$\rho = \begin{pmatrix} x_{c1} & y_{c1} & z_{c1} & \psi_1 & \theta_1 & \varphi_1 \end{pmatrix}^T \qquad \text{ и}$$

$$P_1 = \begin{pmatrix} F_{x1}^{(1)} & F_{y1}^{(1)} & F_{z1}^{(1)} & M_{01x}^{(1)} & M_{01z}^{(1)} & M_{01z}^{(1)} \end{pmatrix}^T , \text{ а также матрицу} \qquad K_1 = \begin{pmatrix} E_3 & 0 \\ 0 & \Gamma_1 \end{pmatrix}. \text{ Тогда}$$

работа сил, приложенных к платформе, на возможном перемещении платформы, определяется выражением:

$$\delta A_1 = P_1^T K_1 . \delta \rho \tag{17}$$

Из уравнений (5) можно получить

$$\delta \rho = -\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial q} \, \delta_q \,, \tag{18}$$

С другой стороны, сумма работ движущих сил равна

$$\delta A = Q^T \delta q . ag{19}$$

Из уравнений (17), (18) и (19) получаем:

$$Q = \left[\left(\frac{\partial \Psi_{\Pi}}{\partial \rho} \right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial q} \right]^{T} K_{1}^{T} P \tag{20}$$

В конце главы дан пример расчета движущих сил. Полученные результаты показывают, что при приближении к особому положению неограниченно возрастают движущие силы и моменты.

В четвертой главе исследована динамика манипулятора с упругими звеньями. Закрепим положения роторов двигателей и приложим к полюсу платформы систему сил и моментов, описываемую столбцом:

$$P^{\left(1\right)} = \begin{pmatrix} F_{\mathcal{X}}^{\left(1\right)} & F_{\mathcal{V}}^{\left(1\right)} & F_{\mathcal{Z}}^{\left(1\right)} & M_{\mathcal{X}}^{\left(1\right)} & M_{\mathcal{V}}^{\left(1\right)} & M_{\mathcal{Z}}^{\left(1\right)} \end{pmatrix}^{T}.$$

Здесь $F_x^{(1)}, F_y^{(1)}, F_z^{(1)}$ - проекции главного вектора сил приложенных к платформе на оси первой системы координат, а $M_x^{(1)}, M_y^{(1)}, M_z^{(1)}$ - проекции главного момента относительно полюса платформы всех сил, приложенных к платформе, в проекциях оси на той же системы. Тогда в упругих элементах возникнут деформации $\Theta = (\Theta_1, \dots, \Theta_m)^T$ (m — число упругих элементов), а также уравновешивающие силы и моменты, описываемые столбцом $G = (G_1, G_2, \dots, G_m)^T$. На основании принципа возможных перемещений имеем:

$$P^{T}K_{1}\delta\rho + G^{T}\delta\Theta = 0, (21)$$

Заметим, что при достаточно малых деформациях, при которых уравнения геометрии платформы сохраняются, уравнения эти могут быть переписаны в форме:

$$\Psi_{\Pi}(\rho,\Theta) = 0. \tag{22}$$

В результате имеем при независимых &

$$\delta \rho = \left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta} e^{\left[\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta}\right]^{T}} K_{1}^{T} P.$$
(23)

Колебания вблизи положения равновесия возникают в манипуляторе после его прихода в зону позиционирования. Эти колебания продолжаются и после окончания процесса позиционирования. Поэтому время, необходимое для их затухания, должно добавляться к времени позиционирования при оценке производительности манипуляторов. В данном случае, приняв $q=q_0=const$, получим скорости и ускорения платформы в форме:

$$\dot{\rho} = -\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta} \dot{\Theta}, \qquad (24)$$

$$\ddot{\rho} = -\left(\frac{\partial \Psi_{\Pi}}{\partial \rho}\right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta} \ddot{\Theta}, \qquad (25)$$

Столбец сил и моментов сил инерции платформы определяется выражением:

$$\Phi = -J^* K_1 \left(\frac{\partial \Psi_{\Pi}}{\partial \rho} \right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta} \ddot{\Theta} , \qquad (26)$$

где $J^* = \begin{pmatrix} mE_3 & 0 \\ 0 & J \end{pmatrix}$, m — масса платформы манипулятора, J — матрица моментов инерции платформы относительно центра масса.

Для составлений уравнения малых колебаний манипулятора вблизи положения равновесия воспользуемся общим уравнением динамики:

$$G^T \delta\Theta + \Phi^T K_1 \delta\rho = 0. (27)$$

Где $G = -C\Theta$, $C = diag\{c_1, c_2,, c_n\}$ – диагональная матрица жестокостей.

Принимая во внимание равенство (26), получим дифференциальное уравнение малых колебаний вблизи положения равновесия:

$$C\Theta + \left\{ \left[\left(\frac{\partial \Psi_{\Pi}}{\partial \rho} \right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta} \right]^{T} K_{1}^{T} J^{*} K_{1} \left(\frac{\partial \Psi_{\Pi}}{\partial \rho} \right)^{-1} \frac{\partial \Psi_{\Pi}}{\partial \Theta} \right\} \ddot{\Theta} = 0$$
 (28)

В конце главы даны примеры расчетов динамических ошибок и собственных частот манипулятора. Полученные результаты показывают, что при приближении к особому положению неограниченно возрастают динамические ошибки и стремится к нулю одна из собственных частот.

В пятой главе рассмотрены вопросы управления манипулятором. Для управления манипулятором необходимо решить две задачи. Одна из них – обходить особые положения, не отклоняясь от программной траектории рабочего органа манипулятора. Для решения этой задачи предлагается использование избыточных входов. Эти входы могут работать как в режиме

альтернативного включения, так и одновременно с другими активными входами.

В первом случае в каждый момент времени работают лишь шесть приводов. Остальные приводы не соединены с соответствующими ногами и являются пассивными. В каждый момент времени (на каждом шагу) рассчитываются значения критериев качества текущей конфигурации для всех вариантов шести активных приводов из *m* имеющихся и выбирается тот, которому соответствует наилучше значения критерия.

Во втором случае все ноги равноправны и все приводы работают одновременно. При этом считается, что двигатели являются датчиками момента. Поскольку число двигателей превышает число степеней подвижности механизма, имеется некоторый произвол в выборе движущих моментов, позволяющий оптимизировать некоторый критерий.

В качестве такого критерия выбран минимум суммы квадратов движущих моментов.

В заключение главы был рассмотрен пример управления манипулятором. При управлении с помощью альтернативных входов использовались следующие критерии

- модуль якобиана системы уравнений (2),
- сумма квадратов движущих моментов,
- значение низшей собственной частоты механизма.

Оказалось, что все критерии дают и те же значения моментов переключения ног из активного состояния в пассивное и обратно.

При одновременной работе всех приводов сумма квадратов движущих моментов оказывается существенно ниже, чем при альтернативном включении.

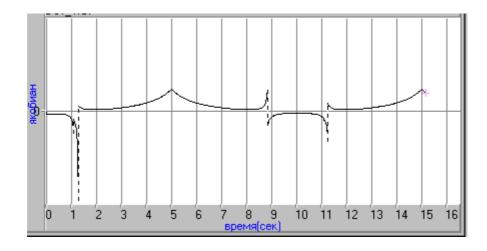


Рис.4 График изменения якобиана

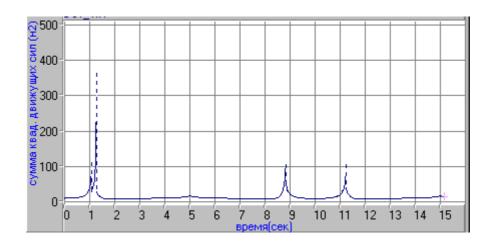


Рис. 5 График изменения суммы квадратов движущих сил

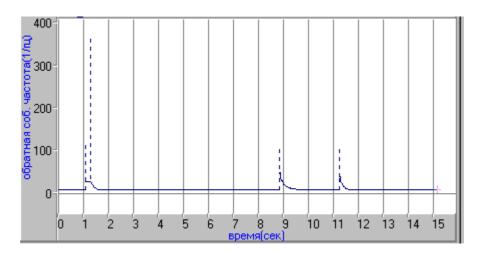


Рис.6 График изменения величины обратной низшей собственной частоты

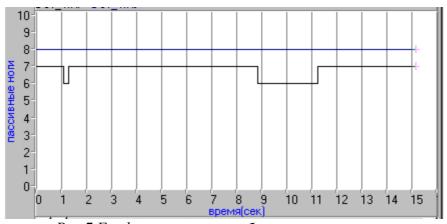


Рис. 7 График изменения набора пассивных ног

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

В результате выполненных исследований сформулированы следующие основные выводы:

- 1. В окрестностях особых положений, решение прямой задачи геометрии манипулятора невозможно.
- 2. Невозможно определить в окрестности особых положений линейные скорость и ускорение, а также угловые скорости и ускорения платформы.
- 3. Ошибки положения платформы, вызванные малыми отклонениями геометрических размеров от номинальных и обобщенных координат от программных при приближении к особому положению становятся немалыми.
- 4. При решении задачи исследования динамики манипулятора с жесткими звеньями определены движущие силы и реакции в кинематических парах. Результаты расчета движущих сил показали, что в окрестности особого положения движущие силы неограниченно растут.
- 5. После окончания процесса позиционирования при заторможенных двигателях манипулятор совершает малые колебания вблизи положения равновесия за счет податливости передаточных механизмов и деформации опор. Результаты расчета собственных частот показали, что в окрестности особого положения низшая собственная частота стремится к нулю.
- 6. Для успешного решения задач управления замкнутыми механизмами необходимо оценивать качество последовательности конфигурации платформы вдоль траектории. В основе оценки должна лежать степень близости механизма к особому положению. Показано, что варианты законов управления практически одинаковы при использовании таких критериев переключения приводов
 - якобиан системы геометрических уравнений платформы.
 - сумма квадратов движущих сил.
 - низшая собственная частота механической системы при учете упругости приводов.
- 7. Для решения задачи обхода особых положений при переходе платформы из одной точки в другую предложен метод использования избыточного числа ног. Дополнительные ноги могут работать как одновременно с другими ногами, так и в режиме альтернативного включения. В первом случае все ноги равноправны, все приводы одновременно отрабатывают программную траекторию. Во втором случае в каждый момент времени работают лишь шесть приводов, а остальные два являются пассивными. При этом на каждом шаге есть 28 вариантов наборов активных ног.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Коловский М.З., Петров Г.Н., Слоущ А.В., Альван Х.М. Оптимальное управление движением позиционирующей платформы Стюарта с избыточными входами// XIII Симпозиум, Динамика виброударных сильно нелинейных систем. Москва—Звенигород, 2001.
- 2. Коловский М.З., Евграфов А.Н., Петров Г.Н., Семенов Ю.А., Слоущ А.В., Альван Хассан Мухаммед. Управление движением замкнутых многоподвижных механизмов// В сборнике "Формирование технической политики инновационных наукоемких технологий". Материалы научнопрактической конференция. Т.1. СПБ.: Изд-во СПБГПУ. 2002г., стр 110-114.
- 3. Альван Х.М., Слоущ А.В. Об управлении движением пространственной платформы с несколькими степенями подвижности // Теория механизмов и машин. 2003. № 1.с 63 69.