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Lections on plasma theory are part of a program “Advances and Applications in
Plasma Physics”, This is an advanced course and students are supposed to be
familiar with basics of plasma physics in the framework of introductory courses like
“Introduction to Plasma Physics” and “Elementary Processes in Plasma”. Lectures
on plasma theory are planned for two semesters. In the first semester students study
kinetic theory and transport processes in plasma, while the second semester is
devoted to plasma dynamics, including MHD theory, equilibrium and stability.
More advanced problems like neoclassical theory, stochastization of the magnetic
field, edge plasma physics are also considered. Waves in plasma are not included in
this course and should be studied separately. Considered are only low frequency
waves and instabilities which are closely connected with the dynamics and transport
of plasma, like MHD and drift waves. Plasma kinetics is the basic part of plasma
theory.

The distinctive feature of this course compared to most courses on plasma
physics is that phenomena in both low and high temperature plasma are considered
simultaneously so that theory of slightly ionized and fully ionized plasmas are
presented. Therefore, this course might be useful for wide auditorium of students
and specialists working in different areas like nuclear fusion, gas discharge physics
and low temperature plasma applications, space and astrophysics etc.



Plasma Kinetics

1.1. Boltzmann Equation

Plasma state generally is described by a set of distribution functions £, (7,7,¢) for all
the plasma components and their quantum states. The distribution function could be
denoted as a particle density in a six-dimensional coordinate and velocity phase space,
while the quantity dna(F,V, )= fad?dﬁ Is a number of particles in an infinitesimal
element of a phase volume. Subscript o here represents different particles, neutral or
ionized ones, as well as different quantum states of atoms, molecules or ions. Below
considered is classical ideal nonrelativistic plasma. Variation of the number of
particles in the six dimensional phase space in the absence of collisions is caused by a
flow of a “phase liquid” to the neighboring regions of the phase space and change of
the number of particles in time. It is controlled by a six dimensional continuity
equation

o, &0 .
L+ —(f,x)=0.
RN

In the phase space six “coordinates” x, in the Cartesian coordinate system are
three space coordinates r, and three components of the velocity 7, and “velocities”
x, correspondingly consist of three components of the velocity 7, and three
components of the acceleration V,. Therefore the continuity equation in the phase

space has the form
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The first term on the l.h.s. represents temporal variation of the distribution function,
the second term corresponds to divergence of a flux in the real space, and the third



term corresponds to the flux divergence in the velocity space. The acceleration 7, is

produced by the forces applied to a particle. In the plasma

Ze
m

o

V=2C(E+NV xB])+g,
where Z_ is a charge number of a particle, m, is the particle mass, £ and B are

electric and magnetic fields respectively, m_ g is the gravitational force.

The space coordinates and velocities are the independent variables, hence

oV, /or, =0. Also since the Lorentz force is perpendicular to the velocity of a particle,

we have oV, /0¥, = 0. So the continuity equation is reduced to the form

Yoy jda_y, (1.1)
ot or oV

or
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This equation is known as Vlasov equation.

The Vlasov equation could be rewritten in any generalized coordinates ¢, and
momentum p,. The Vlasov equation in the form of Eq. (1.1) in the general case is
derived from the continuity equation in the phase space using a relation
0q,/0q,+0p,/op, =0, which follows from the Hamilton equations:
G, =0H /dp,;p, =—0H | 0q, .

The left hand side of the Vlasov equation is equal to a full derivative df, /dt.

Therefore in the stationary case according to the Liouville’s theorem the distribution
function is constant along the phase-space trajectories of the system. An important
statement which follows from the Liouville’s theorem is that the stationary

distribution function in a collisionless case should be a function of integrals of



motion. This important notice gives an opportunity to find the distribution function in
various collisionless problems.

Account of collisions changes the Egs. (1.1), (1.2) since the distribution
function is not constant along the trajectories even in the stationary case. In the
process of collisions the velocities of the particles changes as well as their quantum
states (we shall not consider the change of the particle positions in the process of
collisions assuming that the plasma is an ideal gas). In the presence of collisions the

Kinetic equation is given by

di of -of Ze(= —
t=—c 4\ <=4 < |E+ Bl)|—=+0§—= =5t , 1.3
dt ot or ma< V> ])av Sov T (13)

where a collision operator on the r.h.s. Sz, is responsible for the change of the

distribution function during collisions. The Eqg. (1.3) is known as a Boltzmann

equation. The collision operator is a sum over all species

St, =Y St.(for i) (1.4)
B

Each summand corresponds to collisions of the species o with all species in the
plasma including particles o.

We shall consider elastic collisions when the quantum states of particles
remain the same in the process of collisions and energy and momentum of the

particles are conserved. We assume that before the collision two species o and B
have velocities Va and VB, while after the collision they changes their velocities to the
values V! and 17[; correspondingly without changing spatial coordinate. After each
collision the particle with the velocity I7a escapes from the infinitesimal volume in the
velocity space dI7a . The full number of such escapes caused by the collisions of the
particles of o species with the particles of the species B with V.V, — V.,V per

second in the infinitesimal velocity space volume dV, for a fixed value of ¥, is given

by an expression



dQ,, =drdV, [ [ f,V,) f,(V,)(do,,/ ARV, ~V,|dQaV .
Vv, Q

Here do,,/dQ is a differential cross section of scattering to the solid angle Q.
Besides losses in the infinitesimal velocity space volume d7, there is also a source

caused by the collisions V!,V -V, ,V.

.-V which transfer particles with the velocities

V.,V to the velocity space volume @V, :

=dfj“f V) £, (V) (do,, /AN, -V,

Velocities V! and 17[; under the integral are not independent but connected by

the conservation laws. Indeed, in the process of collision of the particles with the

velocities ¥/, ¥ the particle of species o obtains the velocity V,. Let us change
variables in the integral and integrate over the velocities 7, Vﬁ using the

conservation of the relative velocity ‘17& —17',5‘ =

V! —17[;‘. As is known from classical

mechanics, Jacobian of this transformation is equal to unity: dV.dV,=dV,dV,.

Finally, since integration over dV, is carried out in the vicinity of a chosen value 7,

one obtains

dQ;, =draV, [ [ f,(V.) f,/)(do, /dQ)N \de\?B.

v, Q
Combining sources and sinks in the volume drdV_, we find
dQ;, —dQ,, = St,drdV,,

where the collision operator is



Sty (f, f) = [[ (£, =, f,)(do,,/ dQV, —V[dQaV . (1.5)
vy Q

Here f./=f/(V)), f,=f/(V,). The Eq. (1.5) is known as Boltzmann collision

operator.

Boltzmann kinetic equation (1.3) is an integro-differential equation which
contains all distribution functions of the particles in the system. Therefore a system of
coupled equations for all distribution functions is to be solved.

In the process of derivation of the collision operator we assumed that during
the collision the particles coordinate remains unchanged. This is justified provided the
potential energy is significantly smaller than their average kinetic energy which is of
the order of their temperature 7. For the charged particles an average potential energy

of the Coulomb interaction is ZaZBe2/4nso<rw>, and average distance between the

-1/3

charged particles <raB> is of the order of »"°, where n is the plasma density.

Therefore, the criterion of ideal plasma used in the derivation has the form
Z,Zye’n'"? | T <<1.

In other words the plasma should be sufficiently hot and not very dense.

An inelastic collision operator can be constructed in a similar way. However,
it is seldom used in the general case, in practice analyzed are special processes-
ionization, recombination, excitation etc, so the integrals over the velocities are used
which are easier to obtain directly.

Moments of the distribution function describe macroscopic plasma parameters.

They are defined according to

M

aoj,k...n

= (V7. v, £, GV ,0dV . (1.6)
The most important of them are the following. Particle density:

n, = j £.dV . (1.7)



The flux density of the particles is defined as
T, =n,ii, = [Vf,dV (1.8)

where i, is the fluid velocity. The average energy of chaotic motion (for single

atoms) is:

3 om,(V=i,) . -
nT, = [ —e e fAv (1.9)

A quantity T, is called a temperature. A heat flux density is defined according to
G = [~ P (7 ~i) f,dV . (1.10)

Frequent collisions in the plasma tend to establish local Maxwellian

distribution function, which is defined as

fuM _M} (1.11)
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In the absence of all forces in the stationary case and in the homogeneous plasma The

Boltzmann equation (1.3) is reduced to the equation Sz, =0. It is easy to see that the

Maxwellian distribution functions with the common temperature and common fluid
velocity turn to zero the collision operator. Indeed substituting Maxwellian functions
Eg. (1.11) into the collision operator Eq. (1.5) we find that the bracket (f, f; — £, f3)

is zero, which is the consequence of the energy conservation during an act of
collision. Therefore, the Maxwellian distribution functions of all the particles
correspond to the thermodynamic equilibrium. More strong statement is known in

statistical physics as Boltzmann H-theorem — in the absence of all forces a system



tends to thermodynamic equilibrium and hence to establishing of the Boltzmann

distribution functions.
1.2. Collision operator for Coulomb collisions

1.2.1 General expression for a flow in the velocity space caused by collisions

The Boltzmann form of the collision operator is inconvenient in the case of Coulomb
collisions. This is connected with the specific character of the Coulomb collisions
where small angle scattering for large impact parameters dominates and determine the
Coulomb cross section. The fact that the velocity change in a single act of collision is
small with respect to the particle velocity can be used to simplify the Boltzmann
collision operator. Indeed during collision process ‘phase fluid’ arrives at a given
phase volume from the neighboring regions, therefore almost continuous flow of
‘phase fluid’ takes place. In other words, the collision operator can be rewritten as a

divergence of a flow in the velocity space
St =-V_.TV. (1.12)

With such form of the collision operstor the kinetic equation takes the form of
continuity equation in the phase space also with account of collisions. The general
expression for the flow induced by the collisions has the form (summation over
subscript k is assumed)

;  Fy of.
vo_ " ja _ o o
D=t f,=D; o (1.13)

o

The higher derivatives over the velocities are neglected here and the corresponding

series are truncated since the neighboring regions give the major contributions to the
flow. The gquantity F“Oft is known as a dynamical force, while quantity Dj is a

diffusion tensor in the velocity space. For the collisions with the different species the

flow in the velocity space is defined as



QVA

=2l
B

Now we shall demonstrate that the quantities < and D¢ are connected with

the problem of deceleration and scattering of the test particles oo due to collisions

with the background particles of the species . Let us consider a cloud of test
particles which had the same velocity ¥ =¥, at the initial moment z=0. The mean

velocity i which at =0 coincided with ¥, is decreasing with time due to collisions.

Simultaneously, due to the process of scattering diffusion of the cloud takes place.
Evolution of the cloud of test particles in the velocity space is shown schematically in
Fig. 1.1. In the homogeneous plasma in the absence of forces the time derivative of

the cloud mean velocity can be rewritten using Kinetic equation as following:

a;’t" st( ijde_—jVaf“dV ——va Tav.

After integrating by parts, taking into account that the distribution function vanishes at

the infinity, so that f, -0 at ¥ - , and therefore according to Eq. (1.13),

'V — 0, one obtains

Fst SZ‘ aDOL .
IFVdV——_[[ ;‘;f“ -D4 gf; JdV——jf( i an"JdV. (1.14)
o k

a k

Substitution of the test particles distribution function at #=0 in the form

ful s =100V =V}) to the Eq. (1.14), yields

o Y oD
ol . om, oV,

=0 o

(1.15)

Diffusion of the test particles cloud is described by a tensor of dispersion

<(I7 —ii),(V - ﬁ)k>. Here averaging is defined as



(g)=[gfavin.

Evaluating the expression for the dispersion in the same manner as for the time

derivative of the mean velocity it is easy to find

o —ii) ,(V — i), )
ot

=2D%. (1.16)

t=0

Hence we demonstrated that the dynamical force F*, the diffusion tensor D2, and

consequently the collisional flow in the velocity space and the collision operator, are

connected with the parameters of the test particles cloud in the velocity space.
1.2.2 Deceleration and diffusion of test particles cloud in the velocity space

Let us calculate the quantities in the l.h.s. of the Egs. (1.15), (1.16). The collisions

between the particles of species a and 3 should be considered in the center of mass

reference frame as a scattering of a particle with the mass m,,z = m mg /(m, +mg) and

the relative velocity ii" =V, — I7B on a central potential. The change of the velocity in

the laboratory frame is proportional to the change of the relative velocity:

mg

AV, = Al

m,, +my

A relative number of scattering events with a given impact parameter p and azimuth

angle ¢ for asingle test particle is

dny(V'Yu'dS = f,(V"dV'u'dS = f,(V")dV ' pdpde .



Multiplying this expression by a change of the velocity AV, and integrating over the
ambient particles velocities we get

8u/.

ot

= [/, wdl" w =" [ aunds . (117)
=0 m, +my

Similarly

o(V - 1),V -0), )
ot

2
= - m
— 4 ’ _ B r r,r
= [ (V)W dV', w, _[mwmﬁj [AujAuju'ds . (1.18)

t=0

Here vector w, and tensor w,, are the functions of the relative velocity, therefore due

to the tensor invariance they could be expressed according to

u’ u'u,
w,; = u_iA’ w, =0,B+ (uj,)kz C, (1.19)

where A, B and C are scalars. Let us calculate these tensors in the reference frame
with the z axis parallel to the vector of the relative velocity. In the process of
scattering at a deflection angle 6 in the central mass system the change of the relative

velocity components is
Au’ =u"sinOcoso,
Au, = u" sin Osin @,

Au! =—-u"(1-cos0).

For the Coulomb collisions the impact parameter is expressed through the deflection

angle according to

10



where a strong force radius r, is defined as

Z,Z,€
R=—"2r .
T dmegm,,(u”)’

The change of the relative velocity components as a function of the impact parameter

hence is given by

Au; =2u' coSo,
" pP+r]
r o
Aug =2u" ZPS ~sin g,
ptI
r.2
Au; =-2u" —=—.
prtr

Let us substitute these expressions into Eqgs. (1.17), (1.18). The integrals over p tend
to infinity and should be truncated at some value p=p, . since in the plasma the

Coulomb potential is screened at distances of the order of Debye radius. We shall

choose p,,,. =r,, where the Debye radius is defined as

rn=.— (1.20)

The resulting integrals have logarithmic accuracy and are proportional to a

Coulomb logarithm A , where A is a large quantity of the order of 10-15:

A=In(r,/r). (1.21)

For more details see for example [6]. In particular

11



After integrating in Egs. (1.17) and (1.18) over p and ¢ we find

r

w, =—(1+m /m)L,— 1
j=—(d+m,/mp) “ Jr(u')?

uiue | 1
ij = LO‘B(SJ-‘( - (ujr)2]4nur ’

2,2,
L= Al =22 |
SOmOL

The time derivatives of the mean velocity and dispersion are given by

.
u;

. W) Sy (VHav’,

oW =), (7 =ii)y)| Ly o8, uiy i
ot Can | W W) P .

t=0

u;

ot

m. L
:_1+_°~LB
( mB)4n'f

(1.22)

Note that time derivative of the higher moment <(I7—ﬁ)[(l7—ﬁ)k(l7—ﬁ)j> does not

contain parameter A and hence its contribution to the flux in the velocity space cab
be neglected. With account of expressions

o’u Sy uu
ov.ov, u W)’
o 1 u’

_ J

o W)’

Eq. (1.22) can be rewritten in the form

12



ma f(V)
o) [‘\ = J

a<(V—ﬁ),-<V—ﬁ)k>\ (1 s o o
e

t=0

u;

ot

To rewrite Eq. (1.23) in one more form it is useful to introduce ‘Rosebluth potentials’

fB(V)

9= j - av’,
(1.24)
W= j 7=V ar.
T
The “potentials’ ¢, and ‘¥, are linked by the relations
ALY, =g,
Ay =,

where A is the Laplace operator in the velocity space. One can derive Eq. (1.25)

using the following:

0 19}
M2 - +ﬂ)LaB ] (1.26)
ot =0 Mg aV/

13



oV —ii),(V —ii) o’
< ! ! =-2L,—L. (1.27)
ot oV v,
=0 ‘

1.2.3 Momentum an energy losses of the test particles

The derived equations are of special interest since they can be implemented to find
momentum and energy losses of the test particles of the velocity ¥, in the background
medium of B species particles. The particle momentum is decreasing according to Eq.

(1.26). Let us derive the momentum loss of electrons due to collisions with ions. We
assume that the electron velocity is much larger than that of background ions. Then
neglecting the ion velocity in the denominator of integrand in Eq. (1.24), one obtains

¢, =—n,/4nV,, and, neglecting the mass ratio,

op Ae'Z°n
Ll =v,p, Vo= 1.28
ot | Pe 4TE8§m§VeS ( )

Here the collision frequency v, corresponds to inverse characteristic time scale for

electron deceleration at initial moment when all electrons have the same velocity. The
collision frequency is inversely proportional to the cube of the electron velocity, i.e.
decreases with the velocity which is typical for Coulomb collisions. Note that one
cannot use this equation at later stages since electrons not only decelerate but are also
deflected during electron-ion collisions. The collision frequency given by Eqg. (1.28)
can be called a slowing-down collision frequency. A collision frequency which
corresponds to the characteristic time of their deflection can be obtained using Eq.

(1.27). Choosing the z-axis in the direction of electron velocity we obtain

o(V -0),/ -0), )
ot

+
(1.29)

t=0 =0

14



Hence the deflection collision frequency is twice larger than the slowing-down
collision frequency.
The characteristic frequency for the decrease of the kinetic energy of electron

can be calculated using the following derivation:

oV i) (V —i), i
o _ompyy A0 D00 el
ot|,, ot2"‘’ /=0 2 ot ot |,
t=0
Here we use identity
(V -0),(v -0),) = (V) -0
After substitution of Eqgs (1.26), (1.27) one finds
oe -
A =-m,L[op +(@+m, /m)V, Vo] (1.30)
t=0

Let us calculate for example the change of the kinetic energy for electrons in electron-
ion collisions. By analogy with electrostatics where the potential and electric field

outside of the cloud of distributed charge density are known to be ¢, =—-n,/4nV,

vn. }
V.o, = L we obtain
ALRVE

(1.31)

We see that a collision frequency for energy exchange in the process of
electron-ion collisions v; is 2m,/m, times smaller than the slowing-down collision
frequency v, . This is expected result since the kinetic energy of electron is changing

rather slowly in the collisions with ions because of the small mass ratio. If the velocity
of particles are comparable the corresponding expressions can be derived from Eq.
(1.30).

15



1.2.4 Landau collision operator

Using the expressions for dynamical force and diffusion tensor in the velocity space
Eqg. (1.15), (1.16) and Egs. (1.27)-(1.27), we find the flow in the velocity space
Eq.(1.13):

6(pB 0° ‘P o,

r=—p [Je 1.32
s ““[mﬁ oV, Jo~ ov,ov, aV] (1.32)
Let us use the following relations:
0
1y Ty
ov,  8ni Moy
) (1.33)
oy j U, fidv'
ov, o, IV
Here we introduced a tensor
o, uu,
=T 1.34
Jk ur (ur)3 ( )
The first relation in Eq. (1.33) can be obtained according to
- oUu
9 ﬁdV’: :__I s I fﬁU av',
oV, < u (u ) 6V'
with account of
u; __lank _laUﬂf
Wy 20V, 20V
The second relation is obtained according to
oY, 1 © 1 =
B _ ' ' '
9 fB - fB V'= jUjk wdv’.

ov.ov,  8mav, 8m aV

16



Finally, substituting Eg. (1.33) into Eg. (1.32), we obtain the flow in the velocity
space in the form

ja

zizieA . (£ o o).,
v o_ 8ng—ﬁzm Ujk{—“—ﬁ——ﬁ—“ dv’'. (1.35)
0"

Landau collision operator is equal to the divergence of this flow with an opposite

sign:

St

227%*A of  f! -
e iujk{f b ﬁaf—JdV’. (1.36)

“P 8reim, oV,

1.3Collision operator in the relativistic case

In the previous Section relativistic effects were neglected. For electrons this is
justified if their temperature is significantly smaller than their rest mass (~0.5MeV).
In the opposite case one shall use more general expression for the collision operator.
In this Section we shall restrict consideration to the practically frequent situation of
the relativistic particles moving through the background of nonrelativistic particles
which could be considered as practically stationary. Since the deflection angle is
assumed to be small as in nonrelativistic case one can neglect radiation with respect to
the collisional energy losses.

The momentum of relativistic particle o moving in the z-direction is
p=p,=ym\V, (1.37)

2)—1/2

where m, is a rest mass, and y=(1-V?/c is the relativistic mass factor. The

particle energy is

E, =ym,c’ =,/ mlc* + pc?. (1.38)

17



The initial energy of nonrelativistic particle B is E; = mﬁcz. After the collision the

energies of particles o and 3 are given by

E. =Jm2c’ +(p, +3p,)2c>+(3p, )°c? . (1.39)

E; = \/m§c4 +8p2c+(8p, )%c’ .

Here dp, is the momentum change in the direction perpendicular to the z-axis. For the

small change of momentum during the collision

2
£, —E, @1+ 2Pt O ) (1.40)
2E?
: 8p,)” +(3p.)’
E:mc2(1+( : 7).
B B
2mgc?

We neglect here (8p,)* since from the energy conservation one obtains

2
op, =—(1+ E‘*Z M« p,.
m,c*" 2p,

The change of the momentum in the perpendicular direction depends on the impact

parameter as (See previous Section)

2m Vopr,
op, =—+—=.
pl r.SZ +p2

The total effect of collisions with all impact parameters is described as

o((6p,)?) L% 2mpVn 2m2c?
T _2mrV )/ dp = 1.41
( mars ) _([(rsz_}_pZ)Z p V VO‘B ( )

18



a<(8pz)> — _(1+ Ea ) mics {/ .
ot mec®’ pVv

Here it is taken into account that the number of encounters in unit time with impact

parameters in the interval (p,p+dp) is nV2mnpdp. The collision frequency at the

speed of light is

Z2Z%'A
— e T 1.42
Vap 4ne?m?c? (142)
Analogously
o(op, op .
M = M(mac)svaﬁpkl : (143)
ot
where
P’8 — PP e
Pkl — klp3 k M ’ Mz (1+ mjcz)I/Z
The relativistic collision operator is given by
St,; =mic qu i(u2 f )+ g (& a(“f"‘)]. (1.44)
mgp~ dp P2

1.4. Fokker-Planck equation

Landau collision operator still remains too complicated. In some cases it could be
further simplified. It particular it can be done for the test impurity of heavy ions in the

ambient plasma with light ions. Let £, be a distribution function of test heavy ions,

so that n, << n,. We assume that impact of heavy ions on the distribution function of

19



lightions f; is negligible, and function f; is assumed to the Maxwellian one. Taking

into account that for fo = fBM the relation

s _ My
kJpB 1

o, 1,

is valid, we can simplify Landau collision integral Eqg. (1.36). The first term can be

transformed as:

0 Jo W gy O f 0 f
—\U, dV'=-— "‘V dV' =—— (U, Lo, - 'dv'.
an jk m, o aV _[ j f anI Jk Tﬁ 2 ”k)f

Here the second term under the integral is equal to zero,

U ) =0. (1.45)

‘17‘, we have #” ~ V', and, therefore,

a f 8 6‘1{ VVV f
-—|U, dv' = L\ Ley, fidV
o)t Vil 6V/I[V’ vy |1, Iy

In the second term the contribution from components with j = k turns to zero (in the

reference frame where the mean velocity #" is absent), therefore the remaining

integral is given by

fofs , WV =) 5 4 m” 3

o = ().
8VI 0y W2 T " 5 o)

B

The second term in Landay collision integral Eg. (1.36) is reduced analogously.

Finally the kinetic equation with the simplified collision operator has the form

20



d, -~ 0 5. T o,
L=V —=Vf, +—=2), 1.46
AL maéV) (1.46)
where a collision frequency v, is defined as
1/2 2=2,4
~ 2my?Azzle'n,

Vo= (1.47)
ap
12n“%£nkT;”
Equation (1.46) is known as Fokker-Planck equation. In the homogeneous plasmas in
the absence of external forces this equation describes the process of relaxation of a

distribution function f, to the Maxwellian distribution function with the temperature

Ty

3/2 V2
f(xM =n, o eXp| — P
21Ty 2T,

-1

«s- Indeed this Maxwellian distribution

with the characteristic time scale t=V

function f* turns to zero the r.h.s. of Eq. (1.46).

The Fokker-Planck equation is a linear equation and can be solved
analytically. Let us demonstrate how the Fokker-Planck equation can be used to
calculate mobility of impurities-the coefficient which connects the applied electric
field and mean (fluid) velocity of impurities. In the stationary homogeneous plasma in

the electric field the Fokker-Planck equation has the form

ZeEof, . 0 5. T,0f
Lo o o (Vf, + ey, 1.48
m o gp et o) (1.48)

o
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Let us multiply Eq. (1.48) by ¥ and integrate over velocities. After integrating by
part one obtains that the first term in the r.h.s. is proportional to the particle flux

n i, , while the second term turns to zero. Integral in the lLh.s. is equal to

ao !

~Z,neE/m,_. Finally

i =bE, b =——%_, (1.49)

Thus the mobility is given by Eq. (1.49) with the numerical coefficient equal to unity.
The distribution function can also be obtained from Eq. (1.48). In relatively small
electric fields when the fluid velocity of impurities is much smaller that the thermal

velocity, the solution can be sought in the form of a sum of the maxwellian
distribution plus small correction: f = f" + f'. In the linear approximation the
distribution function in the l.h.s. of Eq. (1.48) can be taken as the maxwellian one

£, = fM since electric field is a small value, while in the r.h.s. £, = £ can be kept

since the maxwellian distribution function turns to zero the r.h.s. Then it is easy to

obtain

fi=T @ L (150)
p

where the mean velocity is given by Eq. (1.49). In other words the distribution

function is given by expansion of a shifted maxwellian distribution
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(1.51)

It is however worthwhile to note that in the general case the distribution function in

the electric field does have such simple form.

1.5. Runaway electrons in fully ionized plasma

Let us analyze the distribution function of electrons in the homogenious plasma in the

absence of magnetic field in the weak electric field

3
E<<g, =$AN (1.52)
€y

e

Here the field E, is known as a Dreicer field. This condition is equivalent to an
assumption that the electric force is smaller than the friction force acting on the main

body of electrons with the thermal velocities V; = /2T, /m, :

ne‘A
enE << nm,v, (V;,)V;, ~ nm V. m
From which one gets Eq.(1.52). In the opposite case the main part of electrons is
infinitely accelerated since the friction force is unable to balance the electric force due
to the inverse dependence of the friction force on the velocity.

In the weak electric field when the condition Eq. (1.52) is satisfied only small
fraction of electrons is accelerated by electric field so the distribution function has a
tail in the direction —E, Fig. 1.2. The main bulk of electrons is approximately
described by the Maxwellian distribution function while the flux to the tail in the
velocity space is caused by the Coulomb collisions. Since the number of runaway
electrons is small (exponentially small as shown below) the problem of runaway

electrons can be treated as stationary problem. Indeed the density in the main body of
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distribution function is very slowly decreasing or is compensated by small source of
electrons.

Let us restrict ourselves by calculation of the number of electrons per second
which are accelerated and becomes runaway electrons, i.e. we shall find stationary
flux in the velocity space towards larger energies. The kinetic equation in the electric

field is given by

TV =0. (1.53)

Let us introduce spherical coordinates in the velocity space with the z axis in the — E
direction. The second term in the L.h.s. of Eq. (1.45) can be rewritten in the form

(dependence on azimuth angle is absent due the symmetry of the problem)

eE of eE of sino of

———=—(c0s0—————)
m, oV m, o  V 00
eE| cosb 0 ,,, 1 0 .
=— —Vf)- —(fsin“0) |
miv2 aV(V ) Vsineae( )}

Divergence of the collisional flux in the velocity space (the third term in the l.h.s. of

Eg. (1.53) in the spherical coordinates has the form
v, V= 9wy L 9 6iner).

V2oV V sin 0 60

We are interested in the collisional flux averaged over the angles in the velocity space
I/ = izfdcpf dOsin 0T
" 4n o 0 g

Now one can also average kinetic equation for fast electrons over the angles assuming

cos 0 = 1, since the distribution function of fast electrons is strongly elongated in the

— E direction. From Eq. (1.53) one obtains
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1 o —;
(sz)+ﬁw VI))=0. (1.54)

of eE 0
—_ + —_—
ot my*ov

The average distribution function f is sufficient to calculate the net flux in the

velocity space. In the collision operator it is sufficient to take into account collisions
of the fast electrons with the slow Maxwellian background. Collisions of fast
electrons with ions gives small contribution to the flux over energies due the small
mass ratio, and collisions between fast electrons are negligible.

According to Eq. (1.35) a component of a flux of the fast electrons in the

velocity space is

i Ae? f oty M) of ).,
I =-— ,[Ujk . o v
8neg,m, m, oV, m, oV,
Ae T of (199
e — - -
= — (U, | VM V) + = (V) —— [dV".
8m;§meTeJ ‘k( S m, v )avkj

Here 7" is unshifted Maxwellian distribution function. Let us evaluate the first term
in the integrand. In the zero approximation the relative velocity coincides with the fast

electron velocity #” =V, and tensor U, is independent on /' so that the integral
turns to zero. In the first approximation using the expansion u" =V (1 —VJ.V_/.’/VZ) and

expanding the tensor U ,, , one obtains

Ou VWV | Vv N Vv Vv ViV

Juwitr (V')dV':j(V v e kj- (1.56)

x M VdV'
The last and the previous terms cancel during integration, since

VYV ot o a0 Ve [y et gimaie = Vi [ o ov (i’
3[R AV =3 [ Al = S [y 7
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The first two terms in Eq. (1.56) are identical. Hence

' T 1 2Tg
JUdipr i =y s

e

The second term in Eq. (1.53) can be evaluated analogously. One has to take into

account the inequality 7, <<V, and expansion of the tensor U, up to the second

order terms proportional to (¥')* is required. Finally flux in the ¥ direction is

7 T, of
IV =—v,(V(Vf +---2),
v r m oV
where
ne‘A
v _
() 4ns§m§\/3

is the collision frequency of fast electrons. After averaging over the angles in the

velocity space

T =y i s e &
I = v 0007 + =20 (L57)

The net flux in the velocity space as follows from Eq. (1.54) is given by

S, =T/ +5 7. (1.58)

After neglecting time derivative in Eq. (1.54) one obtains the conservation of the net

flux in the velocity space

4nV?’S, = const =n,. (1.59)
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Here a constant 7, is a number of fast electrons per second escaping in the velocity

space, which is to be found. This equation should be considered as equation for the

averaged distribution function of fast electrons. In the dimensionless form

E B Vm;/zal/Z

E - T1/2
D e
the Eqg. (1.59) can be rewritten as

df u—u - n,m,
du " a f==Cu  C= 16n’ne*Aa'’? (1.60)

The solution of Eg. (1.60) is given by

ul
Fu")

u 4
J=F-CF| du', F= Aexp{i (%—uz)] (1.61)
0

When i — 0 the distribution function f — f“’. This condition determines the

constant 4:

3/2
A=n| e .
27T,

For u — oo the function F — oo, while the function f remains finite, so the ratio

f/F — 0. This condition determines the constant C

3/2
L u 1(2nT, | % 1 ut
c :j;du:;( ” ‘fj J‘exp{—a(?—uz)}udu.

0

This integral can be calculated using Laplace method. Finally the number of runaway

electrons per time unit is proportional to
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n, =B(a)nv,(V;,)exp(—E, /4E). (1.62)

A function B(a) is some dimensionless power function of the parameter o, which

cannot be found in the framework of approximation considered. The reason is
connected with the fact that the Dreicer electric field Eq. (1.52) is proportional to the
Coulomb logarithm A , so that the latter is under the exponent in Eq. (1.62). Since the

Coulomb logarithm A is specified with logarithmic accuracy the quantity p could be

correctly calculated only using the next approximation. So the Eq. (1.62) determines
the number of runaway electrons with logarithmic accuracy.

For the electric field larger than the Dreicer electric field, the main mechanism
of the runaway electron generation is associated with so-called avalanche effect-
multiplication of the fast electrons due to low impact parameter collisions of the fast
electrons with the thermal ones. During such collisions electrons with the velocities of
the order of the speed of light c produce new fast electrons, and the generation speed
is proportional to the existing number of the fast electrons. The collision frequency for

the electrons moving with the speed of light in accordance with Eq. (1.28) is

Ae'n
v.(C)=—————. 1.63
(©) 4mglm?c? (1.63)

If the electric field is larger than the critical electric field (E, = E,(¢))

Ae’n
E.= 5
£,M,C

(1.64)

Then the fast electron can transfer part of their energy to the slow electrons. For

1/2

E >> E_ accelerated are electrons with the velocities V' >V, =c(E./E)"'~ since their

friction force is smaller than the electric field. Since the Coulomb cross section is
inversely proportional to the cube of the scattering angle and therefore is inversely

proportional to cube of the transferred velocity, such electrons are born as a result of
4
scattering of fast electrons with the frequency v, =%. The number of such
AreimiV
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electrons born per second by order of magnitude can be estimated as (/. is a 1D

distribution function of fast electrons which is independent of the velocity)

c? e’n
£ _psl
A m

e

[vifdv = f;
8me,C

Vo

7 (

Assuming that the distribution function of fast electrons is constant, so that their
density is n, = ¢f,, one obtains an estimate for the number of fast electrons, which are

born per time unit

i =nv (cNE/E,—1)/(2A). (1.65)

Here the factor (£/E_,—1) demonstrates that the avalanche effect has threshold

character.

1.6. Distribution function of electrons in slightly ionized plasma

As in the previous section we shall consider the electrons being the test particles.
Then the collision operator could be linearized and kinetic equation could be
simplifies significantly. Slightly ionized plasma is defined as the plasma where the
following inequality is fulfilled

V, << Voo (1.66)

where v, is electron-electron collision frequency cronkuoserwmii (for clarity let us
consider v,, to be identical to v,(J") of the previous section), and v, is electron-

neutral collision frequency. However, the condition given by Eg. (1.66) is not
sufficient to treat electrons as test particles. There is another frequency responsible for

the change of electron energy in the electron-neutral collisions:

(1.67)
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This frequency contains electron to neutral mass ratio, while in electron-electron

collisions energy of electron is changed practically during one collision at a time scale
~ v, Hence the Coulomb collisions could be neglected only if more strong condition

is satisfied:
v, << Vi (1.68)
The intermediate case

Vi, <<V, <<V, (1.69)

Also correspond to slightly ionized plasma, and due to frequent electron-electron

collisions the distribution function of electrons is close to the Maxwellian one.
1.6.1 Approximation f;, f,

Let us assume the condition Eq. (1.66) to be fulfilled. Due to the small energy loss of
electron in the electron-neutral collisions the mean velocity of electron is small with
respect to the chaotic velocity. As a result the anisotropic part of the distribution
function should be also small with respect to the isotropic one. Hence it is reasonable
to seek the distribution function as an expansion over spherical harmonics decaying

with number:

FG V)= i > FEV 0V (0,0). (1.70)

=0 m=—1

The coefficients f,” depend on the velocity absolute value. Spherical functions could

be expressed through the associated Legendre polynomials

Y" = P"(cos 0) exp(imo).
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The first spherical functions are
Y, =1, Y’ =cos0, Y, =sin0(cos+ising).

Let us truncate expansion Eg. (1.70) and keep the first two terms. Then Eqg. (1.70) can

be rewritten in the form

TG 4

fFV, )= f,(F,V, 1)+ 7

(1.71)

This distribution function should be inserted into the kinetic equation for
electrons. Below is the result of evaluation of the different terms of the kinetic

equation. The first term:

g _% Vo (1.72)
o ot V ot

The term with the spatial derivative has the form
W.f=WV_f,+WV . (fVIV).
Using the identity known from vector algebra
V(F-G)=(FV)G +(GV)F +[F x[VxG]]+[G x[Vx F]],
one obtains
W.f=W.1, +g(17vf)ﬁ. (1.73)

Other terms are evaluated analogously:
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_i(é+[\7x§])vv.f

:_E\Li_ﬁ(\/ )—————[V ><B]—.

(1.74)

The collision integral is also separated onto two components (for homogeneous

neutral gas at rest)
St =St%, + St

which depends on f, and fl correspondingly. Now multiplying Kinetic equation by
(1/4m)dQ2, where dQ is the solid angle in the velocity space, for simplicity axis

could be directed along fl after integrating over solid angle we obtain the averaged

Kinetic equation:

A Vy j_eEV LIV _E
o 3 m,3 oV mV

7 =8 (1.75)

Multiplying kinetic equation by quantities ¥, /7 and (3/4=)d<Q2 and integrating over

solid angle dQ, one obtains three equations. After summation we have one equation

in the vector form

of, eEof, e = = )
ZLLVV, _m_a_v m—e[Bxfl]:<SteN>. (1.76)

e

Collision integral for the electron-neutral collisions could be obtained from the
general expression Eq. (1.5). It is also possible to derive such expression directly
assuming the neutral particles to be cold and staying at rest. Indeed, since the relative
velocity coincides with the velocity of electron, the number of particles coming and
leaving the differential volume in the velocity space is (for brevity the differential

cross section is denoted as ¢
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St dV = [ nyo(V', 00 FQdV" ~[ n o (V, 0 fdQdV .
Q Q

Electron velocities before and after collision are connected by the relation

2m,

V'=V[l+ (1-cos0)]">.

N

It then follows that dV'/V'=dV /V . Hence

13 3
V" avia = V3 av .
4 4

V' =v"dvdQ =
Substituting this expression to the collision integral one obtains

Sty = ’I"/—g [ r6(7,0) -V for,0)ldQ2. (L.77)

Let us first calculate collision integral Eq.(1.69) in the first approximation with

respect to the ratio m,/m, , i.e. the mass ratio is put to zero. In this approximation
V'=V and therefore f, = f,, so according to Eq. (1.77) Stz), =0. Inserting the

correction ]7117/1/ into Eq. (1.77) we find

Sty =nyV|f; |j [6(V,0)cos® —o(V,0)cos0]dQ. (1.78)
Q

In this equation scattering angle between vectors ¥ and 7' is denoted as 0, while

0,9 and 0',¢' are the angles related to the spherical coordinates for vectors ¥ and

V' correspondingly. Let us now turn from the integration over scattering angle to the

equivalent integration over the angles 6’,¢". Let us evaluate the first term under the

integral. Expansion of the cross section over Legendre polynomials is given by
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o(V,0)=> c,P(cos).
k

The cosine of the angle between two vectors is given by the expression
cos 0 = cos O cos O’ — sin Osin 0’ cos(p—').
According to addition theorem for spherical functions

P, (cos6cosO’ —sin 0sin 6'cos(e — ¢")) = P, (cosO)P, (cos’)

+ ZmZk_; E:z :_ zgipkm (cos@)P" (cos0") cos(m(p — ).

Integrating the first term in Eq. (1.70) with account of orthogonal properties of

Legendre polynomials, one obtains

[0(7,8)c0s0dQ = [ 5, cos® 0dQ = (47/3)a,
Q Q

It is convenient to rewrite this expression again with account of orthogonality in the

form

[6(7,8)c0s0dQ = [ 5(7,8) cos 6402
Q

Q

Combining two terms in Eq. (1.70), we find
Sty =—v VIV, (1.79)
where

v, (V) =nV j (1-cos0)o(V,0)dQ (1.80)
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is known as transport collision frequency for electron-neutral collisions. After

averaging with the weight 3V, /(4n}"), we have

(Sthy ) ==y ") 1, (1.81)

To obtain the nonzero value of St°; it is necessary to keep the terms of the
order of m,/m, in the collision integral Eq. (1.77). Inserting the value f, into Eq.

(1.77) and expanding the integrand in series, one obtains

V* £,6)dQ. (1.82)

0
St =" [ —p2
N V3£[ ]8V2

Finally, inserting the value V' into Eq. (1.74) we have

2m,1 0

Stty = e a7 ) (1.83)
N

Collison integrals given by Egs. (1.81) and (1.83) enters the right hand sides of
equations for f, and fl and therefore close the system for isotropic and anisotropic

parts of the distribution function.

1.6.2 Distribution function in the electric field

Let us find a distribution function of electrons in the homogeneous plasma in the
presence of stationary homogeneous electric field, and in the absence of magnetic
field. In this case the Egs. (1.81), (1.83) has the form

oy eEVOLIV) eE 5 _2m 1 s

o m, 3 o  mV'' m, Vot 04 (184)
of,  eE of, - '
Ty ().

o m ooy Ve
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Since there is only one featured direction along the electric field, the distribution
function fl |E . As follows from the second equation the characteristic time scale for
establishing stationary distribution function is given by v_, , i.e. occurs practically at

a single collision and corresponds to the relaxation time scale for the momentum. In

the stationary case

s eE O,
AN Y (185

The equation for f, can be rewritten in the form

0 1 eEo(fV> m 1
%‘ 3 m, (QV : o, V7OV Yo W 4] (189
e N

After substituting fl into Eq. (1.86) we have

9 1 e’E* 0 v: o of,| m, 1 0
ot 3V ml ov

WY AN T v s

The process of f, relaxation has a diffusive character as can be seen from Eq. (1.87),

the stationary distribution function is established at a v_,m, /m, time scale. The

stationary distribution function can be easily found by integrating Eq. (1.87) for
of,/0t=0:

\ r .2 ’
f, = Aexp{— | %v} . (1.88)
0 N

This distribution function of electrons is determined by the velocity dependence of the
electron-neutral collision frequency.

If the collision frequency is velocity independent (such situation is typical for
He in the wide range of velocities) then according to Eq. (1.88)
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fo= Aexr{— e } , (1.89)
where

For the constant collision frequency distribution function is a Maxwellian one with
effective temperature given by Eqg. (1.90). Since in accordance with Eq. (1.87) the

process of gaining energy has a diffusive character with the diffusion coefficient
D, ~e’E* [(m’v,,), then during time scale v_,m, /m, the average square of the
velocity reaches V> ~ D,v_\m, /m,, and average energy is of the order of that given
by Eq. (1.90).

As a second case let us consider constant mean free path A,, . The collision
frequency is then proportional to velocity: v, (V)=V /A, ~V . According to Eq.
(1.80)

fo= AeXp{— —} . (1.91)
e

This distribution function is known as Druyvesteyn distribution function. Here the
velocity dependence is much stronger than for the case of Maxwellian distribution

function.

1.6.3 Impact of electron-electron collisions
When the condition Eq. (1.69) is satisfied electron-electron collisions have strong

impact on the distribution function of electrons. In the r.h.s. of equations for f, and

f, (1.75)-(1.76) now it is necessary to take into account electron-electron collision

integral St,,. This additional collision integral in the equation for f, is of the order of
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v..f,, while electron-neutral collision term St ~(m,/m,)v,, f,. Hence, when
condition Eq. (1.69) is fulfilled ,the main term in the r.h.s. of the equation for f is
St (f,, /o). For weak electric fields and gradual density and temperature gradients
terms in the L.h.s. of Eq. (1.75) are small with respect to v, £, and the solution of the
equation for f; is a function which turn to zero the r.h.s. St (f,. f,) =0, i.e. the
Maxwellian distribution function f* . On the other hand in the r.h.s. of the equation

A

for 7, Eq. (1.76) the additional term from electron-electron collisions Sz, ~ v,

remains small with respect to <SfiN>- Therefore the equation for £, remains the same

as without electron-electron collisions, and fl Is expressed through f, according to
Eqg. (1.76), where f, is equal to the Maxwellian distribution function.

In the inhomogeneous plasma this approach is valid if the characteristic spatial
scale of the inhomogeneity L exceeds the relaxation length of the distribution function

-1
ee !

A, . Relaxation of f; to ™ takes place at a time scale v_', hence the length A,

corresponds to the random walk shift during v_'. Along magnetic field the step of
radom walk is mean free path A, , and across the magnetic field the step is electron

gyroradius p_, . Hence
;\'f\l = }\’eN(VeN /Vee)l/z ’7\’fi = pce(VeN /Vee)l/z .
1.6.4 General expression for f,

General solution of the Eq. (1.76) for fl in the case of slow processes when time

derivative can be neglected has the form

]?l:_M(\/%_eE %), (1.92)

where
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VeN _ ('oce 0
2 2 2 2
(Dce + VeN (Dce + VeN
M _ (Dce VeN 0 . (193)
- 2 2 2 2
(’Oce + VeN wce + VeN
0 0 1/ v,

Here o, =eB/m,. The function f, is close to the Maxwellian one provided the

condition Eq. (1.69) is satisfied.
1.7.  Transport coefficients for electrons in slightly ionized plasma
Particle and heat fluxes in slightly ionized plasma with the distribution function close

to the Maxwellian one could be obtained by direct integrating of the distribution

function. Particle flux of electrons is

fe=nae=jr7(f0+f‘ )dV_—jqudV (1.94)

Since the function fl is linear with respect to density, temperature and potential

gradients, the particle flux can be written in the form

[,=-D,Vn-b,En-D]nVT,/T,, (1.95)

where D, is a diffusion tensor, D, is a tensor of thermal diffusion, b, is a mobility

tensor. Inserting fl as a function of £, Eqg. (1.92) into Eq. (1.92), for f, equal to the

Maxwellian distribution function, one obtains
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A

4"6‘ jv‘*M(v)f av,

D, =ljv4|\7| (V) f,dv, (1.96)
3n

4% mv2 3 dD
DI = e Nfdv =T, =,
an (V)( 2) 0 © qT

e
0 e

These tensors can be calculated provided the velocity dependence of the

electron-neutral collison frequency v, (V) is known. According to Eq. (1.96) the

mobility and diffusion tensors are linked by Einstein relation

D, = ' b,.

(1.97)

e

_&
e

The heat flux is defined as

S V)dV. (1.98)

Assuming the directed velocity to be small with respect to the chaotic one, we have

_ 2nm 5

. jv de—EnTu (1.99)
The electron heat flux can be written in the form
g, =—&, VT, +¢'nT.0,, (1.100)

where &, is the thermal conductivity tensor, and ¢ is a dimensionless tensor. Here

the first term corresponds to the heat flux caused by the temperature gradient, while
the second term represents the heat flux caused by the directed velocity. Also a heat

conductivity tensor 4, is often used which is connected with &, by the relation
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g, = gnxe . (1.101)

Using Eq. (1.92) tensors &, (#.) and ¢" could be calculated for known dependence

v (V). They are linked to tensors of diffusion and thermal diffusion by the relation

T
o +o.070D),
dT, (1.102)

R, :Enjge = n(E D,+D] -T,
2 2

¢ =DID T,

where [ is the unity tensor. Diffusion and thermal diffusion coefficients are the same
order quantities.
When the collision frequency v, is the velocity independent quantity,

expressions for diffusion, thermal diffusion and mobility coefficients have a simple
form. From (1.96), (1.02) it follows

1 O AN
2 2 2 2
0 /vy +1 05 /vy +1

1.103
T O | Ve 1 ( )

M,y | 0% /v +1 ol /v +1
0 0 1

For the weak dependence v, (V) or when the detailed description of the

transport coefficients is not required a so-called elementary theory is used (elementary
theory corresponds to the quasihydrodynamic approximation, see the next Chapter).
In this approximation Eq. (1.95) is used with the average transport collision frequency

Vo (T) = (vy (V) =J.veN(V)f0dI7/n. For the strong magnetic field o, >> v, (T)

Eqg. (1.95) remains exact for arbitrary dependence ocraercs v, (¥), which could
easily seen from Eq. (1.96) and definition of v,, (7). More accurate approximations

for arbitrary dependence v, (V) without magnetic can be found in [7].
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For ions simplified expressions of the elementary theory are normally used.

Iji = |j|T =L6i =§5(,i

e 5

1 ©4 !/ Viy
o% Ivi +1 o3 /vi +1

ci iN ci iN (1104)

_ T O vy 1
mv, | o5/vi+1 of/vi+1
0 0 1

For the important case of the ions in their own gas the charge exchange collision

frequency is

1/2
320 T
Vi = 3nlfzx (—’J ny. (1.105)

1.8. Drift Kinetic equation in a stationary electric and magnetic
fields

For fully ionized plasma immersed in a strong magnetic field, it is often useful to
switch to the description of the plasma by following the guiding centers of the Larmor
orbits. It can be done when ion Larmor radius is small with respect to the typical scale
of the problem. In the guiding center approximation of the particle motion, averaging
on the cyclotron motion is performed, and only the guiding center motion is
considered. In this approximation along magnetic field the guiding center moves with

the parallel velocity ¥, and across the magnetic field — with the drift velocity.

Expression for the drift velocity is obtained by averaging of the particle motion

equation over the small Larmor circle with the velocity V, . Result of such averaging

8] is
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me [h V_B]

R = Vh+—[E B]+
(1.106)
+M[ﬁx(ﬁvﬁ)]
ZeB ’

where # = B/B . The second term in the r.h.s. is E x B drift, the third term is known
as gradB drift and the last term is the curvature drift. The expression for the E x B
drift is valid only for the weak electric field so that drift velocity is smaller than the

perpendicular velocity: E/B <<V, .

The variation of the parallel and perpendicular velocity are given by [8]:

\}:eih szdvh+ ”(E[hx(hV)h])— Vi “( B 1h  (Av)A])

VAV oL
_Mhrot(hV)h ,

27¢B (1.107)
V, =— ”ZLdvh l(hrotE)+ L(E[h —])+ L(Eh)(hroth)

oM Ve (VB[h (AV)R]) + \/"va Arot(hv)h .
X
27¢eB 27¢eB

The terms with electric field represents the work of electric field during the particle
motion along the field and work of inductive electric field for time-dependent
magnetic field at a particle rotating over its Larmor radius. The terms connected with
magnetic field inhomogeneity represents the change of the parallel velocity while the

magnetic moment and the full energy remain constant.

It is convenient to introduce five variables: R, p, V |» Where

mvV?
2B

W= (1.108)

Is @ magnetic moment of a rotating particle and is an adiabatic invariant of motion.

Then the equation for the parallel velocity can be reduced to
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L] — V —
v, :—(KVB+§V@)[b +—Lvxb]. (1.109)
m m o,

C

This expression can be derived by using uB + m\/”2/2 +Zep=E =const :
V, = [2 JE-uB-Ze ]——(ILL dB +Ze t)(E——uB—E(p)_llz. (1.110)
Here dd—? — RVB and ?j_(f = F?ch. With account of

2 V2 - N
va - [fix VB ™Yt (v [uvB —eve) =0,
B ZeB

—[E B] +

after substituting Eq.(1.106) for R into Eg. (1.110) we obtain Eq. (1.109).
The drift kinetic equation could be derived by averaging the Boltzmann kinetic
equation over gyromotion, see below. Alternatively it is possible to introduce a

distribution function of the guiding centers in the corresponding 5 dimensional space.

This distribution function F depends on Ii,\/|| and p. The phase space volume

element is defined to give number of particles guiding centers in space unit

dv = 2% BdeV”dp, dN = FdV . (1.111)

In the absence of collisions the continuity equation for the guiding center fluid in the
phase space leads to the Vlasov kinetic equation for guiding centers distribution

function

FREWE -
ot

1.112
R oy, (1112)

This is collisionless drift kinetic equation. It could be extended also to the collisional

case by using collision integral when it is possible to neglect the difference between
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the particle position and guiding center coordinate. Note also that calculation of self-
consistent magnetic field requires knowledge of real plasma currents including e.g.
diamagnetic currents which differs from guiding center currents, so guiding center

Kinetic equation cannot be used for this purpose.

1.9. Gyrokinetic equation

Gyrokinetic equation is more general and can treat time dependent cases in a strong
magnetic field for low frequences. It can be used even for k p, ~1, where k, is a

wave vector across a magnetic field, so waves and turbulence with the scales of the

order of ion Larmor radius can be considered. It is also assumed that

® ' e oB
_'“&'“knpci ~_(P~_~O(8)a

O L T, B (1.113)
K.pg ~OQ).

Let us start with Vlasov kinetic equation (1.2)

of, of, Ze(= .+ =\
—+ 4V 24+ \E+[VxB])—=%=0. 1.114
ot o m, ( v ])av ( )
Now we introduce gyrokinetic variables
f.(F.V,0) > f,(RV,,1n0,1), (1.115)

where relations between initial and gyrokinetic variables are

=[xV, /w._1, V., =V, (cosO& +sin0g,),
[hxV lo,], V. =V/( ) 2) (1.116)

Here 6 is the gyrophase angle. Electric field is assumed to be electrostatic E = —V¢.

Let us express derivatives % and % through the new gyrokinetic variables.
r
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N NR Now oV, YD

(1.117)

For simplicity let us consider uniform magnetic field. Since derivatives 7 are taken
r

at V =const only the first term on the r.h.s. is nonzero and since F =R+p, and

8—8 =0, we have i = i . For derivatives over velocity

N_aWR)_; ow o0 VA28 my,

N N N oV B
@ A -[hxV/w, D _ _alhxV/oe,]
oV oV oV '

Hence
o _fo, muVli_i[ﬁxa]g_a[hxvq/wm]i
N o, B ou V, o0 oV oR

Different terms in the kinetic equation are

vOoovi o 9
or R " oR
Zeg 0 _ ( 0  EVm, 0 E[th]a) ExB o
m, oV “av” B ouw V' 00 B® R
Ze. : = IVxB][BXV] 8 7 a9 590
NV xB]l—= =-0, — 35— —+[[VxB]xB] =
mm[\/ 15 “ T BAT 2 [V xB]xB]
—o, 2LV, 2

00 " aR
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Electrostatic potential and electric field should also be expressed in the new variables.

Since ¢ = (R +p), we have

%9 _Opdr _dedp _V, do_ EV,
0 o0 o0 o, o

ca

and

— - 2
ngvlﬁz_[@jm 2 8

““"Bow \m ) “o0ou’

Now we can rewrite VVlasov equation in the new variables

EXB 6f Ze_ of of Z em. 0o of
(VH 2 ) —+—= E”—a+(x)m_0‘_ a ca_(P_a
R m, 'ov, o0 B 0o
(1.118)
E><BVi afu_

0) —_— =
“ B* V}? 00

The distribution function can be sought in the form f = f°+ f' with expansion

parameter ¢ Eq. (1.113). Keeping the largest term in the zero order approximation

0
one obtains mm%:o, i.e. f° is independent on gyrophase angle. Therefore

o

f,=(f,)+ fr, where (f >=—jf do.

In the first order approximation

0 = 0 0 ! ,
af ” E><ZB)6fg JZp O o 2,00, 200 (g 1)
oR m, "0V, 00 B 06 du

The last small in Eqg. (1.118) is neglected. After averaging of Eq. (1.119) over

gyrophase angle, we have
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olf.) - (E)xB o(f) z a(f,
%+(\/”h+< éz ) é§>+ nf(E”) L) o, (1.200)

This is gyrokinetic equation in a uniform magnetic field in the electrostatic

approximation. In this equation electric field is averaged over gyrophase angle

2n
<E>:2iJ.E(F)de. In the general case of nonuniform magnetic field drift kinetic
T 0

equation can be derived in a similar way and is given by

olf) =o(f) - oalf
SICLANE I a2
ot oR oV,
where
I.i—Vﬁ+i[<E>x§]+M[HXV—B]+m°‘—V”2[ﬁx(ﬁVH)] (1.202)
g2 Ze B~ ZeB ’ '

o o

s Ze
Vi =(
m

(E)-L-vB)(®d +i[w6]). (1.203)
m Q)

o a Ca

Now we have to calculate gyrophase average of the potential and electric field.

o(F) = (R +p) = Y ¢, exp(ikR +ikp) =>_ ¢, exp(ikR +ik psin 0) . (1.204)
K k

We use Fourier-Bessel expansion

exp(ik psin ) = Z J. (k. p)exp(ino) . (1.205)

The averaged value is

48



(exp(ik,psin 0)) = Zizjz 3. (k.p)exp(in0)d =J, (k. p) . (1.206)
TS

Finally
(0) = > 0ok, p) exp(ikR). (1.207)

With this expression one can solve gyrokinetic equation (1.201) with account of finite
Larmour radius effects.

Additional problem in gyrokinetic approach arises from the fact that particle
density and current calculated using gyroaveraged distribution function is different
from the real particle density and current due to guiding center approach. For

example, to calculate the real density, which one can use in the Poisson’s equation,
one has to calculate correction f! to the averaged distribution function. This can be

done using Eq. (119). The sum of the first four terms on the l.h.s. of Eq.(1.119) is
small, with the average fields it is zero according to Eq. (1.200), so that we can

neglect it. Integrating the remaining terms we obtain

f
f, == (@—(@))a< o) (1.208)

The real density is given by

n, = 2njdﬁdv”dum3< f)S(R+p—T) +Id§d\4|dpdem£ f1(R+p—F).(1.209)

o o
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