Министерство образования и науки Российской Федерации Санкт–Петербургский политехнический университет Петра Великого Институт энергетики Высшая школа высоковольтной энергетики

Кафедра электрических станций и автоматизации энергетических систем

К.С. Горячевский, Е.В. Захарова, М.Г. Попов, А.В. Терёшкин РАСЧЁТЫ РЕЖИМОВ РАБОТЫ ЭНЕРГОСИСТЕМ В ПО «RASTRWIN» Методические указания к лабораторным работам

> Санкт–Петербург 2020

1. Исходные данные для расчетов

В этом методическом пособии приведены инструкции по расчётам в программе RastrWin 3. В этой программе выполняются расчёты установившегося режима работы энергосистемы, расчёты уровней токов КЗ, расчёты электромеханических переходных процессов. Здесь дан пример расчёта электрической станции, которая соединена с эквивалентными энергосистемами.

Однолинейная схема рассматриваемой электрической станции приведена на рисунке 1. По справочнику «Справочник по проектированию электрических сетей» под редакцией Файбисовича Д.Л. определяем параметры выбранного оборудования и заносим в таблицу 1.

На схеме не показаны ТСН No2,3,4 и КЛ СН Рисунок 1. Упрощённая однолинейная принципиальная схема электрической станции

Параметр	Значение	Параметр	Значение	
Гене	раторы Г1, Г2	Трансформатор РТСН1		
Тип	TBB-500	Тип	ТРДНС-63 000/220	
Рном, Мвт	500	Uном, кВ	230/6,3-6,3	
cosф	0,9	R, Ом	3,9	
Uном, кВ	24	Х, Ом	96	
x"d, %	21,9	Трансформатор	ы TCH1, TCH2	
X_2, %	26,7	Тип	ТРДНС-32 000/35	
X_0, %	11,7	Uном, кВ	24/6,3-6,3	
Гене	раторы ГЗ, Г4	R, Ом	0,19	
Тип	ТГВ-300	Х, Ом	4,8	
Рном, Мвт	300	Трансформатор	ы ТСН3, ТСН4	
cosф	0,85	Тип	ТРДНС-25 000/35	
Uном, кB	20	Uном, кВ	20/6,3-6,3	
x"d, %	19,5	R, Ом	0,25	
X_2, %	23,8	Х, Ом	5,1	
X_0, %	9,6	ЛЭП-500		
Трансф	орматоры Т1, Т2	Rуд, Ом/км	0,1	
Тип	ТДЦ-400 000/220	Худ, Ом/км	0,3	
Uном, кB	242/20	L, км	100	
R, Ом	0,6	ЛЭП-220		
Х, Ом	25,7	Rуд, Ом/км	0,2	
Трансф	орматоры Т3, Т4	Худ, Ом/км	0,4	
Тип	ТЦ-630 000/500	L, км	100	
Uном, кB	525/24	Энергосист	ема ЭС-220	
R, Ом	0,9	Sкз, MBA	5000	
Х, Ом	61,3	Рнагр, Мвт	200	
Автотра	нсформатор АТ1	Энергосистема ЭС-500		
Тип	АОДЦТН-167 000/500/220	Ікз, кА	50	
Uном, кВ (ВН/СН/НН)	288/127/38,5	Рнагр, Мвт	база (всё остальное)	
R, Ом (BH/CH/HH)	0,65/0,65/2,2			
Х, Ом (ВН/СН/НН)	61,1/0/113,5			

Таблица 1. Исходные данные для расчетов

2. Расчет потокораспределения и уровней напряжения

Для расчета в нормальной схеме электроустановки необходимо заполнить таблицу 2 с параметрами узлов и таблицу 3 с параметрами ветвей. Узлом расчетной схемы принято называть точку на однолинейной схеме, в которой нужно узнать напряжение. Ветвь расчетной схемы соединяет два узла и обычно представляет собой какое-то электротехническое оборудование или электроаппарат.

На рисунке 1 пронумерованы узлы расчетной схемы (число в кружке) и ветви (число в ромбе). Порядок нумерации не имеет значения

В таблице 2 приведены параметры узлов. Названия столбцов таблицы взяты из программы «RastrWin». Обозначения столбцов таблицы:

- Номер номер узла на расчетной схеме;
- Название условное название для обозначения узла, может быть любым;
- U_ном номинальное напряжение узла, кВ;
- Р_н активная мощность нагрузки в узле, МВт ;
- Р_г активная мощность генерации в узле, МВт;
- V_зд напряжение генератора в узле;
- Q_max максимальная реактивная мощность генератора в узле, MBAp;

Таблица заполнена на основании таблицы 1 и расчета мощности потребителей собственных нужд. При этом для узлов ТСН учтено, что нагрузка распределена

поровну на две секции. В данном расчете напряжение генератора V_зд равно номинальному напряжению узла U_ном. Значение Q_max рассчитывается по формуле $Q_{max} = P_{\text{ном}} t g \varphi$.

В программе обязательно нужно для одного узла в столбце «Тип» указать значение «База», в котором будет учитываться весь небаланс мощности. В данном случае по заданию это будет узел №7 «ЭС-500». Чтобы заполнить таблицу в программе, нажмите кнопку «Открыть → Узлы → Узлы». Остальные столбцы в программе заполняются в результате расчёта.

В таблице 3 приведены параметры ветвей. Обозначения столбцов таблицы:

- Номер ветви номер ветви на расчетной схеме, в программе не заполняется;
- N_нач номер узла, в котором начинается ветвь;
- N_кон номер узла, в котором заканчивается ветвь;
- N_п только для ветвей с одинаковыми узлами начала и конца, уникальный номер;
- R, Ом активное сопротивление ветви в именованных единицах;
- Х, Ом реактивное сопротивление ветви в именованных единицах;
- Кт/г только для трансформаторов, коэффициент трансформации.

Таблица 3 также составляется на основании исходных данных. Номер начала и номер конца могут идти в произвольном порядке. Для трансформаторов за начало принимают узел с наибольшим напряжением, за конец - узел с наименьшим напряжением. Номер параллельности N_п заполняется только для ветвей, у которых одновременно одинаковые узлы начала и конца. Столбцы с сопротивлениями R, X заполняются по исходным данным. В данном расчёте **принято следующее** допущение: так как TCH и PTCH имеют две обмотки HH, то каждый из этих трансформаторов показан как два трансформатора с сопротивлениями, в два раза большими каталожных. Коэффициент трансформации KT/r принято записывать как отношение номинального напряжения стороны низшего напряжения трансформатора к номинальному напряжению стороны высшего напряжения, $U_{\text{ном вн}}$, поэтому оно будет меньше единицы. В данном расчете ветвь автотрансформатора записывается аналогично трансформатору. Остальные столбцы в программе запиляются автоматически по результатам расчета.

Чтобы заполнить таблицу в программе, нажмите кнопку «Открыть → Ветви → Ветви».

Таблина 2 Г	Іараметры	V3ЛОВ	расчетной	схемы
1 иолици 2. 1	iupumerphi	y 3510 D	pue le mon	CACMIDI

rading 2. rispand pri Jonob par fernon enembr									
Номер	Название	U_ном, кВ	Р_н, МВт	Р_г, МВт	V_зд, кВ	Q_max, MBAp	Q_г, MBAp	V, кВ	Delta, эл. град
1	Генератор 1	24	0	500	24	242	0	24,01	11,41
2	Генератор 2	24	0	500	24	242	0	24,01	11,41
3	Генератор 3	20	0	300	20	185	0	20,26	18,31
4	Генератор 4	20	0	300	20	185	0	20,26	18,31
5	ССШ 500 кВ	500	0	0	0	0	0	503,36	4,77
6	ССШ 220 кВ	220	0	0	0	0	0	224,89	9,92
7	ЭС-500	500	0	0	0	0	369,871 (Рг = - 1271,200)	500	0
8	ЭС-220	220	200	0	0	0	0	214,8	5,17
9	TCH1 1ceĸ	6,3	12,5	0	0	0	0	6,1	-1,01
10	TCH1 2сек	6,3	12,5	0	0	0	0	6,1	-1,01
11	TCH2 1cek	6,3	12,5	0	0	0	0	6,1	-1,01
12	ТСН2 2сек	6,3	12,5	0	0	0	0	6,1	-1,01
13	ТСНЗ 1сек	6,3	7,5	0	0	0	0	6,2	7,27
14	ТСНЗ 2сек	6,3	7,5	0	0	0	0	6,2	7,27
15	TCH4 1ceĸ	6,3	7,5	0	0	0	0	6,2	7,27
16	ТСН4 2сек	6,3	7,5	0	0	0	0	6,2	7,27
17	PTCH 1сек	6,3	0	0	0	0	0	6,16	9,92
18	РТСН 2сек	6,3	0	0	0	0	0	6,16	9,92

Таблица 3. Параметры ветвей расчетной схемы

Номер ветви	N_нач	N_кон	Ν_Π	R, Ом	Х, Ом	Kt/r	Р_нач, МВт	Q_нач, МВАр	I max, A
1	5	1	0	0,9	61,3	0,05	474	-61	548
2	5	2	0	0,9	61,3	0,05	474	-61	548
3	6	3	0	0,6	25,7	0,09	284	-45	738
4	6	4	0	0,6	25,7	0,09	284	-45	738
5	5	7	1	10	30	0	-653	132	764
6	5	7	2	10	30	0	-653	132	764
7	6	8	1	20	40	0	-104	-9	269
8	6	8	2	20	40	0	-104	-9	269
9	1	9	0	0,38	9,6	0,26	-13	-3	311
10	1	10	0	0,38	9,6	0,26	-13	-3	311
11	2	11	0	0,38	9,6	0,26	-13	-3	311
12	2	12	0	0,38	9,6	0,26	-13	-3	311
13	3	13	0	0,5	10,2	0,32	-8	-1	220
14	3	14	0	0,5	10,2	0,32	-8	-1	220
15	4	15	0	0,5	10,2	0,32	-8	-1	220
16	4	16	0	0,5	10,2	0,32	-8	-1	220
17	6	17	0	7,8	193,4	0,03	0	0	0
18	6	18	0	7,8	193,4	0,03	0	0	0
19	5	6	0	1,3	61,1	0,46	358	-143	443

После этого может быть произведён расчёт потокораспределения в нормальной схеме. Чтобы проверить правильность заполнения исходных данных, нажмите на кнопку «Расчёты → Контроль», затем «Открыть → Протокол». На экране в окне «Протокол» должна появиться надпись «Контроль исходных данных» с зелёным кругом. Если круг желтого или красного цвета, нужно прочитать в окне «Протокол» сообщения об ошибках и проверить правильность заполнения исходных данных.

Чтобы сделать расчёт, нажмите «Расчёты → Режим». В окне «Протокол» должна по- явиться надпись «Расчёт установившегося режима» с обозначением лампочки желтого цвета. Если отображается обозначение красного круга, то расчёт неуспешен, то есть энергосистема физически не может работать с такими параметрами и нужно проверить исходные данные.

После успешного расчёта результаты заносятся в таблицы 4 и 5. В таблице 4 указываются расчётные величины для узлов. Обозначения столбцов таблицы:

- Q г, МВАр рассчитанная реактивная мощность генератора;
- V, кВ рассчитанный модуль напряжения в узле;
- Delta, эл. град рассчитанный угол (фаза) напряжения в узле относительно базисного узла.

Также для базисного узла указывается значение Р_г, то есть суммарный небаланс мощности в схеме.

В таблице 5 указываются рассчитанные величины перетоков мощности и токов в ветвях расчетной схемы. Обозначения столбцов таблицы:

- Р_нач, МВт активная мощность, протекающая в ветви от узла начала к узлу
- конца;
- Q_нач, MBAp реактивная мощность, протекающая в ветви от узла начала к
- узлу конца;
- I max, А наибольший из токов в начале и конце ветви (с учетом приведения к ВН).

Значения активной и реактивной мощности могут записываться со знаком «минус». За положительное направление мощности принимается направление от конца ветви к началу. Ток в ветви обозначается в столбце I max, при этом ток начала и ток конца ветви сначала приводятся к стороне BH, а потом из них выбирается наибольший.

Также результаты расчета могут быть отражены на графической схеме. Для этого на- жмите на кнопку «Открыть → Графика». Пример оформления графической схемы приведён на рисунке 2.

Чтобы сохранить расчётную схему, нажмите кнопку «Файлы \rightarrow Сохранить как», введите название файла и нажмите кнопку «Тип файла \rightarrow режим (*.rg2)».

Рисунок 2. Расчетная модель в программе «RastrWin»

3. Расчет уровней токов коротких замыканий

Для расчетов ТКЗ составляются таблицы с исходными данными 6-8.

В программе «RastrWin» для начала работы необходимо преобразовать уже введённые данные для расчета ТКЗ. Для этого нажать «Файлы \rightarrow Загрузить \rightarrow выберите сохранённый раньше файл .rg2». Затем нажать «Файлы \rightarrow Сохранить как \rightarrow тип файла \rightarrow динамика (*.rst) \rightarrow Сохранить». После этого преобразование закончено, нужно открыть преобразованный файл, нажав «Файлы \rightarrow Загрузить \rightarrow файл .rst».

Таблица 6 содержит следующие обозначения столбцов:

- s0 состояние узла в схеме замещения нулевой последовательности (красный крест – отключен, не входит в схему замещения «0», без креста – включен, учитывается в схеме замещения «0»).
- Тип0 тип узла в схеме нулевой последовательности («зак» значит «закорочен», соединён с землёй; «у» — обычный узел в схеме замещения «0», не соединённый с землёй).

Чтобы открыть таблицу, нажмите кнопку «Открыть → Несимметрия → Узлы/Несим/ИД».

Таблица заполняется так:

- в первую очередь графически на бумаге составляется схема замещения нулевой последовательности;
- для узлов и ветвей, которые вообще не входят в схему замещения «0», ставится красный крест в столбце s0;
- узлы из схемы замещения «1» прямой последовательности, которые на схеме «0» соединены с землёй, отмечаются «зак»;
- остальные узлы, которые не соединены с землёй, отмечаются «у».

В таблице 7 приведены исходные данные для таблицы ветвей КЗ. Таблица содержит следующие обозначения столбцов:

- s0 состояние ветви в схеме замещения нулевой последовательности, аналогично ветвям;
- r0, Ом активное сопротивление нулевой последовательности;
- х0, Ом реактивное сопротивление нулевой последовательности.

В данном расчёте принято, что сопротивление нулевой последовательности всех ветвей равно сопротивлению прямой последовательности за исключением ветвей ЛЭП. Для ЛЭП принимается R0=R1, X0 = 3*X1, т. е. реактивное сопротивление нулевой последовательности в три раза больше прямой последовательности. Сопротивление обратной последовательности программа автоматически задаёт равным прямой последовательности.

В таблице 8 приведены исходные данные для источников ЭДС. Таблица содержит следующие обозначения столбцов:

- N номер генератора в данной таблице, может быть произвольным;
- Название условное название генератора, может быть произвольным;
- N узла номер узла, к которому подключен генератор, здесь совпадает с номе-
- ром генератора;
- Х, Ом реактивное сопротивление прямой последовательности;
- X2, Ом реактивное сопротивление обратной последовательности;
- X0, Ом реактивное сопротивление нулевой последовательности;
- Е, кВ сверхпереходная ЭДС;
- s0 состояние генератора в схеме замещения нулевой последовательности («0» включен, «1» - отключен).

Сопротивления и ЭДС генераторов определяются по исходным данным по следующим формулам:

$$X = \frac{x_{d}}{100} \frac{U_{\text{HOM}}^{2}}{S_{\text{HOM}}} = \frac{x_{d}}{100} \frac{U_{\text{HOM}}^{2}\cos\varphi_{\text{HOM}}}{P_{\text{HOM}}}$$
$$X_{2} = \frac{x_{2}}{100} \frac{U_{\text{HOM}}^{2}\cos\varphi_{\text{HOM}}}{P_{\text{HOM}}}$$
$$X_{0} = \frac{x_{0}}{100} \frac{U_{\text{HOM}}^{2}\cos\varphi_{\text{HOM}}}{P_{\text{HOM}}}$$
$$E = U_{\text{HOM}} \sqrt{\cos\varphi^{2} + (\sin\varphi + x_{d}'')^{2}}$$

Здесь деление на 100 обозначает перевод x''_d из процентов в относительные единицы.

Сопротивления и ЭДС источников определяются по исходным данным по формулам:

$$X = X_{2} = X_{0} = \frac{U_{\text{HOM}}^{2}}{S_{\text{K3}}} = \frac{U_{\text{HOM}}}{\sqrt{3} I_{\text{K3}}}$$
$$E = U_{\text{HOM}}$$

Так как генераторы Г1-Г4 подключены к обмоткам силовых трансформаторов Т1-Т4, соединенным «треугольником», то токи нулевой последовательности не будут протекать по обмоткам этих генераторов. Поэтому для них в столбце s0 указывается значение «1», т. е. «отключено» (в программе отмечено красным крестом). Чтобы открыть таблицу, нажмите кнопку «Открыть \rightarrow Несимметрия \rightarrow Генератор/Несим».

После этого можно провести расчёт ТКЗ. Для этого задайте точку и вид КЗ, нажав кнопку «Открыть — Несимметрия — Состав/Несим». В столбец

«№» ставится цифра 1, в столбце «Тип» выбирается желаемый вид КЗ — 3ф, 2ф, 1ф, 1ф1ф, в столбец «П1» ставится номер узла, в котором происходит КЗ. После выбора вида и точки КЗ нажмите кнопку «Расчеты \rightarrow Выполнить \rightarrow ТКЗ \rightarrow kz». В окне «Протокол» должны появиться надписи зеленогоцвета «ТКЗ проверка схемы», «Инициализация ТКЗ», «Расчет ТКЗ». Если отображаются сообщения желтого или красного цвета, то нужно проверить корректность исходных данных.

Результаты расчета токов КЗ находятся в таблицах «Открыть — Несимметрия — Ветви/Несим/РФ» (значения токов КЗ в фазах) и «Ветви/Несим/РС» (значения симметричных составляющих токов КЗ). Остаточные значения фазных напряжений находятся в таблице «Открыть — Несимметрия — Узлы/Несим/РФ».

Результаты из таблицы «Ветви/Несим/РС» оформляются в виде таблицы 9 для каждого вида КЗ в каждой точке. В таблице указаны следующие обозначения:

- I1_н, I2_н, I0_н, кА токи прямой, обратной и нулевой последовательности в начале ветви;
- I1_к, I2_к, I0_к, кА токи прямой, обратной и нулевой последовательности в конце ветви;

Результаты могут быть сверены с результатом ручного расчёта в базисных единицах по суммарному току в точке КЗ. Для этого в программе нужно открыть таблицу «Состав/Несим» и сложить по модулю значения столбцов I1, I2, I0. Это значение должно совпадать с суммарным током КЗ двухлучевой схемы (в кА). Допустимая погрешность расчёта составляет приблизительно 10%.

4. Заключение

В выводах укажите, как соотносятся между собой суммарные токи в точке КЗ в таблице «Состав/Несим» при разных видах КЗ в разных точках схемы.

, ,	1 1 2	/ · 1
Номер	S	Тип0
1	0	у
2	0	у
3	0	у
4	0	у
5	0	у
6	0	у
7	0	у
8	0	у
9	0	зак
10	0	зак
11	0	зак
12	0	зак
13	0	зак
14	0	зак
15	0	зак
16	0	зак
17	0	зак
18	0	зак

Таблица 6. Исходные параметры узлов для расчета ТКЗ

Номер ветви	r0, Ом	х0, Ом
1	0,9	61,3
2	0,9	61,3
3	0,6	25,7
4	0,6	25,7
5	10	90
6	10	90
7	20	120
8	20	120
9	0,38	9,6
10	0,38	9,6
11	0,38	9,6
12	0,38	9,6
13	0,5	10,2
14	0,5	10,2
15	0,5	10,2
16	0,5	10,2
17	7,8	193,4
18	7,8	193,4
19	1,3	61,1

Таблица 7. Исходные параметры ветвей для расчета ТКЗ

Таблица 8. Исходные параметры генераторов для расчета ТКЗ

N	Название	N узла	Х, Ом	Х2, Ом	Х0, Ом	Е, кВ	s0
1	Генератор 1	1	0,23	0,28	0,12	24,1	1
2	Генератор 2	2	0,23	0,28	0,12	24,1	1
3	Генератор 3	3	0,22	0,27	0,11	20,1	1
4	Генератор 4	4	0,22	0,27	0,11	20,1	1
5	ЭC-500	5	5,78	5,78	5,78	500	0
6	ЭС-220	6	9,68	9,68	9,68	220	0

Таблица 9. Результаты расчета ТКЗ

Номер ветви	I1_н, кА	I2_н, кА	I0_н, кА	I1_к, кА	I2_к, кА	Ι0_к, кА
1	-1,81	0	0	-37,77	0	0
2	-1,81	0	0	-37,78	0	0
3	-0,87	0	0	-9,53	0	0
4	-0,87	0	0	-9,53	0	0
5	24,97	0	0	24,97	0	0
6	24,97	0	0	24,97	0	0
7	2,31	0	0	2,31	0	0
8	2,31	0	0	2,31	0	0
9	0	0	0	0	0	0
10	0	0	0	0	0	0
11	0	0	0	0	0	0
12	0	0	0	0	0	0
13	0	0	0	0	0	0
14	0	0	0	0	0	0
15	0	0	0	0	0	0
16	0	0	0	0	0	0
17	0	0	0	0	0	0
18	0	0	0	0	0	0
19	-2,93	0	0	-6,36	0	0