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INTRODUCTION

Nowadays,  the  trend  of  intellectualization  has  become  very  popular.  Many

consumers and manufacturers have considered modernizing their way of life and/or

production by introducing some kind of intelligent systems.

However, the term “intelligent” should be used with great care and responsibility

since not everything labeled intelligent is in fact so. After all, as with everything else,

a simplification of concepts and a blurring of their boundaries occurs. Any neural

network  tends  to  be  called  intelligent,  along  with  any  digital  sensor,  any  device

included in a smart house (and the control system of a smart house itself).

However, when taking a closer look, it is easily can be seen that in most cases the

use of the term “intelligent” is unfounded and not well considered, since this concept

is inextricably linked to working in conditions of uncertainty, where there is no ready

for use (pre-determined) algorithm, no complete data about the situation, and no clear

understanding of the results to which one or another possible actions will lead. If,

during  its  work,  a  system does  not  perform unforeseen  experiments  in  advance,

thereby generating  new experience,  if  the  obtained experience  is  not  analyzed to

identify new patterns, if missing information is not requested, then this system has

nothing to do with intelligence.

Looking at  the said above,  it  is  easy  to  understand how difficult  and science-

intensive the way of design and development of  any intelligent  system. This is  a

multistep process in which various mathematical, logical, and programming tools are

used.

Some of these are discussed within this guide.  A large part  of  it  is  devoted to

knowledge bases  and,  accordingly,  knowledge engineering as  the  set  of  tools  for

carrying out various operations with them.

The first part discusses the concept of knowledge itself and the most important

ways  of  representing  it,  as  well  as  some  matters  of  its  obtaining  (extraction,

acquisition, formation).
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The  second  part  highlights  the  task  of  structuring  knowledge,  this  is  often  a

necessary step for converting knowledge into code. Here also shown such kind of

structuring as representation of knowledge in the form of rules written in different

logic  languages:  propositional,  first-order  and  description.  The  implementation  of

manual and program structuring is shown using projects like Wikipedia and DBpedia

as example.

Then the third part deals with the software implementation of knowledge bases by

their  formalization,  i.e.,  translation  to  the  appropriate  languages.  This  includes

matching  the  logic  languages  (first-order  and  description)  with  the  means  of

knowledge representation languages.

The concluding fourth part examines the concept of intelligent knowledge based

systems – a complex software product which helps resolve  uncertainties by use of

number  of  heterogeneous  components,  which  should,  however,  synchronize  their

work.

When reading this study guide, it is recommended to view all materials as a tool

for the following software implementation of a knowledge-based system in the form

of a software product. This is especially relevant for materials not directly related to

formalizing knowledge.
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PART 1. KNOWLEDGE AND ITS PRELIMINARY PREPARATION

Intelligence and rationality

The term “artificial intelligence” became so common not only in field of computer

technology and automation, but also in everyday life that no one even thinks about it

anymore. But intelligence is not the same as rationality.

Rationality is  defined  here  as  the  ability  to  perform  logical  operations

(conclusions, generalizations, etc.) according to the basic laws of formal logic, i.e., it

is the ability to think.

Intelligence is  defined  here  as  the  ability  to  solve  problems  in  conditions  of

insufficient  or  uncertain  source  data,  as  well  as  the  ability  to  solve  unknown

beforehand type of problems.

If we analyze the problems which are solved using “artificial  intelligence” and

study their setup and methods for solving, it becomes clear that we are talking about

rationality.  For  example,  problems of  object  recognition  or  problems of  machine

vision  in  general  usually  deal  with  previously  known  objects  or  objects  with  a

predetermined set of characteristics.

The tasks of an “intelligent” search always as well have a clear,  predetermined

setup of the task and fixed methods of how to solve it, that sometimes come down to

complex, but nevertheless predetermined algorithms.

The  task  of  passing  the  Turing  test  is  much  closer  to  solving  problems  using

intelligence  if  emphasis  is  placed  not  on  a  computer  agent  trying  to  be

indistinguishable from a human (for example, making mistakes typical to the latter),

but  instead  on  the  ability  to  discuss  any  previously  undetermined  topic  whilst

demonstrating its understanding at an analytical and synthesis level, and processing

data of a previously unknown structure.

Only a quick reflection on the difference between this problem and the previous

ones is required in order to understand how far it surpasses the rest in complexity. It

is even more complex in its principle solution: it is easy to make a scheme for solving
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the problem of object recognition (<discover an unidentified object>–<request a list

of necessary features sufficient for recognition>–<sequently compare the features in

the base with the features of the object>–<assess the level of overlap, determine the

most  suitable  ones>–<draw a conclusion>),  while  even having a  complete  list  of

possible questions and possible answers on any topic (which is doubtful on its own)

will nevertheless in no way contribute to the “ability” of the machine to analyze and

synthesize random information.

Another example of solving problem using intelligence is the task of determining

the intelligence quotient, for example, the Eysenck test (determining the level of IQ).

We recommend anyone who has never taken such a test to do so, keeping in mind the

task of creating a software agent which could gather the maximum number of points

in the results, without prior knowledge of these problems.

Furthermore, it is important to observe your own process of solving these type of

problems. How do you do it, and what do you use for it? For any question of these

types of tests, you can formulate a logical answer, which will be the result of logical

operations, i.e., thought process. Therefore, this process should be examined in more

detail.

As an example let’s take a problem that is common in such tests (Fig. 1).

Fig. 1. Example problem.

The first thing which can be pointed out in solving it is the type of problem. Here

we are dealing with a problem about a missing element. What gave this away? The

presence of a question mark in the body of the problem.
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So, our way of thinking here starts with an assertion

“?” indicates a problem of absence

Assertion –  a  completed  thought  in  which one  mentioned element  is  revealed

through another. In other words, it must contain a subject and a predicate. In our

example, the subject is “?”, the predicate – “indicates”, and the object  – “problem of

absence”.

It should be pointed out that assertion itself, and not any thought, is the elementary

unit of thinking – the process of logical conclusion.

What is next?

If you already have experience solving problems such as this, you understand that

they can be graphic, mathematical, linguistic, and more.

Here we have a graphic problem, where the solution depends on the arrangement

of pictures (we will skip the steps of reasoning how we classified it as such). Our

assertion is

“The considered problem is graphic”.

Furthermore, it is well known that

Any graphic problem has repeating elements or their repeating properties,

which are necessary to define.

The last statement is not only an assertion but also a  rule due to its universality

shown by the universal quantifier “any”.

Now, by combining the assertion “The considered problem is graphic” with the

rule “Any graphic problem has repeating elements or their repeating properties”, it

can be concluded that

The considered problem has repeating elements or their repeating properties,

which are necessary to define.

Thus, from the rule (about graphic problems) and the assertion (about the specific

problem belonging to the graphic class), the logical conclusion can be made that this

is where we need to look.
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After several steps of such reasoning, we move on to solving it. What is needed for

this? Knowledge of  the rules (assertions with an element of universality) and the

ability to apply these rules to the specific situation for which it was necessary, for

example, to be able to recognize the repeatability of an element in a figure.

Could this problem have been solved without observing the rule defined above?

Remember the first  time you solved this kind of problem, not yet knowing about

repeatability? What other rule did you know? The rule that these kinds of problems

definitely contain a certain pattern. Furthermore, you also had in mind an implicit list

of possible patterns, so after seeing them, you would recognize them immediately:

- repeatability of elements;

- mathematical patterns (continuous growth, changing numbers by law…)

- linguistic patterns – repetition of letters, words, change of letters by rule, for

instance: a, c, e, g, i… and others.

As soon as you would see any of these, you would have tried in some way to apply

it to this problem and, in the end, you would have discovered that in order to repeat

the pattern, a specific element should be placed instead of the “?”, and in order to do

this,  you  would  have  needed  to  presume  that  the  solution  to  the  problem  is  to

maintain the pattern.

This brings us to a conclusion that at the basis of any human solution of any kind

of problem there is either knowledge of specific rules or the ability to guess and test

these  rules  (which  already  speaks  to  a  person  having  rules  for  checking  and

disproving rules).  There is  nothing that  shows a fundamental  impossibility  of

giving these features to software agents.

To sum up let's emphasize that

- knowledge of rules,

- the ability to make assertions,

- the ability to apply the rules to assertions

lie at the basis of making decisions in problems requiring the use of intelligence.

However, they are not required in problems not relating to intelligence, for example,

11



for  image  recognition  (at  least,  explicitly).  The  problems  concerning  the  use  of

elements  of  artificial  intelligence  and  those  not  concerning  it  should  be  clearly

divided since in order to solve them, different approaches and tools are required.

Thus, when designing intelligent systems, our task will be the implementation of

three above mentioned possibilities in software agents.

However,  before  this,  another  important  terminological  point  should  be

understood.

Information, data and knowledge

Now  to  continue  our  work  we  need  to  clearly  understand  its  object  and  this

requires understanding of such concepts as information, data and knowledge.

Before that,  we should understand the process of  defining concepts  itself.  It  is

often required to reproduce definitions, and therefore it is necessary to have a clear

view of how this is done correctly.

There are several ways of defining concepts. We will use, mainly, one of them:

generic term (genus) and differentia  (distinguishing characteristic).  This kind of

definition is called “intension”. When using this kind of method, the closest generic

term and minimum set of features distinguishing this term from others of the same

kind should be identified.

A generic term denotes a more general concept than the one being defined. For

example, the closest generic term of the concept “table” can be called “furniture”, for

“cat” – “mammal”, and so on. The process of moving from a concept to its generic

term is called generalization.

A differentia  can  be  identified  by  more  than  one  way,  therefore  the  resulting

definition  can be different  from that  in  the dictionary,  but  this  in  itself  does  not

signify its fallacy.

Next, the terms “information”, “data” and “knowledge” need to be defined since

further on we are going to deal with knowledge, so we need a clear understanding of

what it is.
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Which of the three terms is the most general, i.e., includes all the rest? This would

be  information  –  any facts which can be perceived and processed by a person or

computer. Obviously, knowledge and data are included in this term. Pay attention to

how difficult it is to propose a generic term for “information”. Due to this, this term

can only be “grasped”.

The definition of information given above is not a definition through a generic

term. On the contrary, this definition is given in the form of examples (more defined

concepts included in it). This is equivalent to a definition such as “a bird is a sparrow,

goose, ostrich”. These types of definitions are called extension, and they only make

sense for such large concepts as “information” when an intension cannot be given.

It should be noted that the definition of the concept information says nothing about

the way in  which the  information is  presented.  This  allows us  to  distinguish  the

concepts  information and  data:  data  is information presented in a structured form.

Thus, it can be presented in the form of graphs, tables, text, sound, etc.; the most

important thing is the presence of order, clearly formulated and formalized. The fact

that it is stored on a computer cannot serve as the criterion that we are dealing with

data.

Knowledge  is  the  least  broad  concept  of  the  three.  It  must  be  structured  and

therefore it is data. However, not all data can be called knowledge.  Knowledge is

data presented in an understandable way for a human or computer agent about how to

use,  apply,  and  process  other  data.  In  other  words,  it  is  data  about  the  ways  of

working with data, or metadata.

Data  and  knowledge  are  fairly  easy  to  distinguish:  if  we  see  a  table  with

information  about  a  change  in  the  exchange  rate  or  about  the  readings  of  a

temperature sensor in a reaction then this is data. While information

if this first data, given in the form of a graph, forms a specific figure

(“head and shoulders”),

then this speaks of a quick

drop in the exchange rate in the near future
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is already knowledge.

At  this  stage,  the  question  already  arises:  how  can  a  machine  apply  this

knowledge? After all, even a person with a clearly formulated rule can quite easy

experience difficulties in applying it.

For  this,  it  is  necessary  to  understand  what  form  knowledge  can  take,  and

according to what criteria it can be distinguished from other data. It is also important

to determine what form it should take in order to be used by computer systems.

Neuroinformatics and knowledge engineering

In the middle of the 20th century when the idea of creating artificial intelligence

came  about  and  was  put  into  motion,  scientists  came  up  with  two  paths  for

developing this area. These two “branches” differ in their basic assumptions, while

sharing a common goal.

In the first case, researchers relied on the assertion that there is currently only one

known bearer  of  intelligence  –  the  human brain.  Hence,  in  order  to  replicate  its

functionality using machines, its structure first needs to be replicated. It is quite easy

to see that this is a way of neuroinformatics, in which artificial neural networks are

built.

In the second case, researchers focused not on the structure of the human brain, but

on the content of thought itself: the assumptions and rules, assertions and facts it

contains. They viewed their task to be modeling the processes themselves in order for

a machine to be able to replicate the intentional process of thought itself. Their retreat

from  biological  structures  was  explained  by  the  fact  that  humans  have  already

managed to create mechanisms not existing in nature (for example, airplanes), which

are capable, to some extent or another, of repeating or even exceeding their natural

counterparts.

For several decades, both of these lines of development paralleled. However, each

of them has its own drawbacks, which have not allowed them to adequately solve the

increasingly complex problems which they are faced with.
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Now let’s look briefly at the fundamental principles of neural networks in order to

get  later  better  understanding  of  the  differences  between  the  two  mentioned

approaches for developing intelligent systems.

The most elementary element at the base of a neural network is an artificial neuron

– a mathematical model of a biological neuron. This model has one or several input

parameters (corresponding to short  sprouts of a neuron – dendrites) and one output

parameter (corresponding to a long sprout – axon). The signals reaching the neuron

through dendrites are added up, specially processed by the neuron, and sent to the

axon.

This means that the artificial neuron itself is nothing more than a mathematical

dependency function of one output parameter on the sum of input parameters. This

type of function is called an activation function.

When joined together, the neurons form a network. An artificial neural network,

therefore, is represented in the form of a graph consisting of vertices (neurons) and

edges (input and output processes).

The area of connection of two neurons (the “exit” of one with the “entrance” of the

other) is called a synapse, and this connection regulates at a chemical level the gain

of the conducted signal.

In mathematical interpretation, this means giving each of the graph edges its own

weight, which implies that the signal running across is multiplied by the value of its

weight, thus the signal arrives at the next neuron already weighted.

Let’s look at Fig. 2 which shows part of an artificial neural network.
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Fig. 2. Part of an artificial neural network.

Thus, the dependency of the neural network’s output from its inputs is expressed in

the following form:

y3 = f3(w5·f1(w1·x1 + w2·x2) + w6·f2(w3·x3 + w4·x4)) (1)

Further, it is usually said that a neural network should be trained, by changing its

graph weights in such a way that any combination of signals at the inputs is processed

correctly.

Thus, it turns out that all intelligence of a neural networks is based only on a set of

all its weights, and since it can be said that neural networks are “able” to process data

correctly and make conclusions based on it, then we can talk about the  knowledge

which the neural network possesses.

At the same time, this knowledge is presented in neural networks implicitly. This

causes a complex, not always solvable, problem of transferring knowledge from a set

of weight matrices into a form which can be interpreted by a human. For example:

what knowledge can be extracted from expression (1) if the numerical values of all

presented  weights  are  known?  After  all,  this  is  knowledge  presented  in  neural

network form.

Furthermore, change in the number of inputs and/or outputs requires retrain of the

network, and the knowledge presented in it before becomes invalid.

16



Moreover, in order to train a truly complex neural network (when the number of its

layers is measured in tens or even hundreds), there are significant requirements to

computing equipment, which at one time noticeably influenced the enthusiasm and

rate of research in this area.

This forces us, despite all the undeniable positive qualities of neural networks, to

search for other methods of representing knowledge and move to the second path of

the two presented above, where our task is to replicate not the form of the thinking

apparatus, but its content.

Then  we  should  move  from  examining  neuroinformatics  to  a  broader  area  –

knowledge engineering.

Knowledge engineering  –  is  a  part of  science about  artificial  intelligence,  that

researches  issues  related  to  knowledge,  specifically  its  extraction,  structuring and

formalization. These are the three main tasks of this discipline.

As a result of completing these three tasks, knowledge is presented in an explicit

form,  “understandable”  for  software  agents,  since  they  are  the  final  subject  of

knowledge application. The necessary forms for this we will discuss later. But now,

we should concentrate on the difficulties which stand in the way of working with

explicitly expressed knowledge.

The main way of storing knowledge is not as numbers, as in the case of neural

networks,  but  as  symbols  (text).  This  means  that  by  default  knowledge  bases  –

specially organized data stores – do not have a built-in mathematical apparatus. This

implies, by default, a lack of ability to approximate mathematical functions. In this

regard  the  process  of  creating  knowledge  within  such stores  differs  greatly  from

creating knowledge within a neural network (i.e., its training).

Knowledge  bases  can  be  filled  in  three  ways:  introducing  already  existing

knowledge, by inference engine computing a deduction and obtaining by connecting

various data analyzers.

In the first case, the already existing knowledge (facts, rules) are inserted directly

into the base. In order to do this, the previously mentioned procedures of extracting,
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structuring and formalizing knowledge should be completed in sequence. It should be

noted that this process is amenable to automation, but this task will be considered

separately.

The second case is about using logic (for example, first-order logic, description

logic).  In  this  case new knowledge is  obtained based on already existing one by

applying the rules taken from the base to the facts contained within it. In other words,

in simple cases we are dealing with deductive inference – a conclusion of concrete

(particular)  facts  based  on  more  general  rules.  This  also  includes  the  search  for

specific patterns in existing knowledge. This is a move from general to specific, for

which  various  inference  engines  are  used  –  programs  which  make  deductive

inferences of knowledge (facts and rules).

The  third  case  is  the  most  complex  and  knowledge-intensive  and  has  two

possibilities:  conduct  inductive  inference  (from  specific  to  general)  based  on

existing knowledge in the base or based on a random data set.

In order to carry out the first possibility, special software analyzers are needed,

operating  from  the  so-called  “open-world  assumption”,  which  implies  that

everything which is not explicitly recorded in the knowledge base can, nevertheless,

exist (for example, if the base does not contain information about the existence of

immortal beings, their existence is still possible).

In order to analyze a random set of mathematical data, a use of individual modules

(including, those of neural networks) is needed, since knowledge bases on their own

“are  not  able”  to  independently  extract  mathematical  patterns,  since  their  own

structure and logic of work is not strictly mathematical.

It should be highlighted that the implementation of possibilities of deductive and

inductive inferences is a key to creating intelligent systems based on knowledge.

However, in order to carry this out, it is first necessary to initially fill the base with

knowledge, based on which it is then possible to make inferences. And in order to

move to this task, we should first look at the internal organization of the knowledge

base itself and at the basic forms of its contents.
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Classes, individuals, and properties

A knowledge base is also represented in the form of a graph with vertices and

edges like neural network. However, unlike neural networks, a knowledge base is not

a  mathematical  model  with  inputs  and outputs.  Its  content  is  comprised  of  some

elements presented in text form and the connections (relations) between them, that is

also text.

When  we  speak  about  knowledge  bases,  we  are  speaking  about  knowledge

represented by symbols. There are certain difficulties along this path which need to

be somehow resolved.

The study of symbols and their meanings is addressed by the science of semiotics.

We are only interested in certain aspects, which include the  triangle of reference

(Frege’s triangle) shown below (Fig. 3), introduced almost 100 years ago, but still

used today.

Fig. 3. Triangle of reference.

Study the image carefully: “C” means “concept”, “S” – “symbol”, and “R” – the

referent (thing). Now we need to understand the connection between this construction

and our further work.

The plain content of the knowledge base is represented by symbols. However, the

task  of  the  knowledge  base  is  to  describe  the  concepts  and  instances

(representatives)  of  these  concepts behind  these  symbols.  In  the  triangle  of
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reference, they take, respectively, the upper (concept) and right (the specific objects

they refer to) parts.

The best analogy which can be given here is object oriented programming with its

two very similar terms: Class and Instance of Class (individual).

A knowledge base, besides the classes and their instances (individuals), must also

contain properties, i.e., characteristics which can refer to classes and instances (more

often the latter). The properties have names (e.g., “mass” or “presence required”) and

values (e.g., “500 kg” or  “steel cable”).

“Class” will be considered simultaneously in two aspects: as a concept (Fig. 3),

determined by the aforementioned method through a generic term and difference of

kind, and as a set (totality) of objects with a specific common collective feature.

In the first  case,  the class  is  defined through another,  broader  (more common)

class. Thus, the class “Accidents” can be defined through the class “Events”, while

noting the features that distinguish the incursion of such situations from other events,

for example, poor predictability, unwanted consequences, and so on. Then it is about

establishing the relation of “subclass of”. A class is defined as a subset (subclass) of a

larger set (class).

In  the  second  case,  a  class  is  determined  through  a  set  of  features,  which  is

satisfied by its individuals, for example: “Cranes with a lifting capacity from five

tons and more”. Of course, it is also possible here to define it using a generic term

(“Crane”). However, when describing the class, the relation of “subclass” was not

established  clearly.  Instead,  a  restriction for  the  property  “lifting  capacity”  was

introduced.  Thus,  the  class  is  defined  as  a  set  of  individuals  satisfying  a  given

restriction.

The  class  instances  themselves (individuals)  are  defined  exclusively  by  their

belonging to one or several classes at the same time. For this, the relation “type” is

used – one of the most widespread in a knowledge base graph.

Now it can be said that any vertex of this graph is either a class or an individual. A

vertex has an identifier, a symbolic name, which corresponds to either a class or an
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instance, and this identifier, which is chosen by the creator of the knowledge base,

should define it clearly. The edges of this graph are the relations between the vertices

(e.g., the mentioned type, subclass, etc.).

The form of representing knowledge base in this way, using the described graph, is

called a  semantic network.  It is not the only possible form (there are also frame

systems and production rules), but it is the one which is looked at below.

In order to do this, we should look at the difference between semantic networks

and other networks and introduce specific terminology.

Syntax, semantics, context

As it can already be guessed, creating a knowledge base, when talking about the

process of filling it, comes down to describing its elements and the relations between

them, i.e., to describing its graph.

At this moment directly creating these descriptions and these connections, we find

ourselves at the layer of syntax. In terms of grammar, syntax (from Greek σύνταξις)

is about principles of constructing and linking sentences in a specific language. In

terms of  formal languages (including programming languages),  syntax is  a set  of

rules for forming more complex expressions from symbols used as the basis. In terms

of knowledge bases, we are interested in syntax as rules for describing and linking

classes and instances.

In order to talk about the rules, it is necessary to define the sources of rules. In the

case of knowledge bases, rules are defined by so-called  knowledge representation

languages (KRL), which, as in the case of programming languages, can cause syntax

errors while checking the code.

It should be noted that the syntax layer is the easiest to check for errors,  since

syntax analysis is the process of comparing the given set of symbols with a well-

defined beforehand template of a standard data structure.

However, what if it is necessary to check not only the knowledge representation

form  itself  but  its  contents  as  well?  At  that  moment,  the  syntax  layer  becomes

insufficient.
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Imagine  that  your  task  includes  checking  that  the  hyperlinks  in  a  system  of

interconnected electronic documents (or pages) work properly. In this case, the work

in the syntax layer involves two checks:

- is it really a hyperlink, does it redirect the user when clicked on;

- doesn’t it direct to a non-existent page, when following it leads to the error

“404” (“page not found”).

However, it is clear that in order to check that the hyperlinks work properly, it is

also necessary to be sure that the link with the text “industrial equipment”  actually

leads to a page with a description of industrial equipment and not of popular medical

supplies. Checks of this kind have no obvious solution.

Here  begins  the  semantics layer  (Greek  σεμαντικος)  –  a  section  of  linguistics

which studies the meaning of symbols, their notional (semantic) load. This lead us to

the conclusion that, the above mentioned check of the link “industrial equipment”

belongs exactly to the semantic layer.

Thus, in order to carry out the mentioned check of the link, a software agent should

follow it, determine the title of the page, identify its semantic meaning, and correlate

it with the semantic meaning of the hyperlink.

The  considered  form  of  a  knowledge  base  is  a  set  of  semantic  (notional)

connections:  class-class,  class-instance,  instance-instance.  Building  bases  is  not

simply  a  process  of  inserting  links  (as  in  the  Wikipedia  project),  but  a  semantic

description,  i.e.,  a  clear  indication  of  the  nature  of  the  connections  between  the

elements, e.g., an instance belonging to a class (“a quadcopter is an unmanned aerial

vehicle”)  or  a  cause-and-effect  relation between events  (“violating the  process of

desalinating oil leads to a reduction in the quality of gasoline fractions”) and so on.

This form of representing knowledge bases is called semantic networks.

The tasks of semantics also include issue of finding way by which the meaning of

more  complex  concepts  can  be  derived  from  the  meanings  of  simpler  concepts

without human involvement, taking into account the syntax of links between them

(for example defining something using a generic term and its differentiating features).
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However, here the next more complex problem arises. Some words have multiple

meanings, and some are homonyms. In both cases, one word has multiple meanings.

This creates some difficulties, since, even if the full list of possible meanings of a

specific concept is known in advance, how can it be determined which of them is

used in the given situation?

This takes us from the semantic layer to the next layer – context (Latin contextus).

Context is a broader semantic field about the relation between a specific element and

its surrounding elements which in fact determine its interpretation.

Let’s take for example the concept “pot”. In the context of kitchen equipment, this

concept  means  a  cooking  container  usually  made  of  metal.  In  the  context  of

gardening and botany, the concept “pot” means a container (often clay) for planting

flowers, small trees, etc.

Thus,  it  is  the  surroundings,  or  a  context,  which  gives  understanding  which

meaning of the concept should be used this time.

But it is worth remembering that any situation and any concept can be looked at in

several contexts at the same time with varying degrees of generality, for example, the

process of exchanging data between sender and receiver can be considered in a social

context (with its rules and conditions), as well as in the more general context of the

time and place of the contact.

However, the context of a message or concept in general may be unspecified or

unknown. In this case, in order to choose an appropriate meaning for the concept, it is

necessary to have an idea about the next layer after context –  pragmatics (Greek

πραγμα),  which  studies  the  goals  and  desires  of  the  interacting  agents,  which

determine the necessary contexts and, as a result, the meanings of the concepts. Put

otherwise, pragmatics studies the connection of the subjects that use linguistic means

with the contexts and semantics of these means.

Now, having examined the main aspects relating to knowledge, we will move on to

setting tasks which can be solved through knowledge-based systems.
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Tasks of knowledge-based systems

The very first task which is associated with using knowledge-based systems is the

information search (both online and in any other sources).

The need for developing this area is seen when working with internet searches. Of

course, such a problem did not exist at the beginning, when the Internet had just come

about, when it had yet to offer surfing pages and global searches and only helped with

looking up documents in stores and granting access to them. However, when the idea

of Web 1.0, and later Web 2.0,  emerged and was implemented, the problem of a

keyword-based search in the search engines became clear.

The fact is that, by default, search programs do not understand the meanings of

words and “perceive” any information on a page as nothing more than a combination

of symbols with unknown content, an undefined context and which is used for an

unknown purpose. What problems does this entail?

First of all, we are talking about showing results, many of which are not relevant to

the query. The reason for this is that the context of the query is not taken into account,

therefore occur problems with words of multiple meanings when the results include

pages relating to completely irrelevant meanings (paintbrush instead of vegetation

brush). This problem can be solved, for example, with knowledge of statistics,  of

more widespread contexts, which determine the appropriate meanings of the words.

Furthermore, search may suggest pages where the requested word simply appears

and is not the subject of a text or page. In order to solve this problem, the search

agent  should  be  able  to  analyze  the  number  and  quality  of  the  links  (relations)

between this word and the other words on the page.

On the other hand, a simple search by keywords does not give all results because it

does not take into account, for example, searches by synonyms and other names (for

example, when searching for information by the word “Jaguar” using standard tools,

you will  not see pages containing its  scientific name  Pantera onca instead of the

searched word). This includes taking into account metaphorical expressions, common

names, and other contextual definitions.

24



In  order  to  solve  this  problem,  a  knowledge-based  system  uses  an  already

structured  knowledge  base,  in  which concepts  are  stored  taking into  account  the

contexts,  synonyms,  and  other  features  (this  is  one  of  the  purposes  for  which

semantic connections between elements are created).

It is worth special mention that a knowledge base can and, rather even should, be

distributed, which means that a specific system module can access not only a local

base but a remote base as well.

Unlike the task of extracting knowledge from already prepared bases, the task of

extracting  knowledge  from  unstructured  sources  is  one  of  the  most  labour-

intensive due to the need to first determine the context of the source material itself

and then to conduct an analysis of the connections and meanings of the elements

contained within the source wherein, the content and order they are presented in is

not known in advance – and only afterwards solve the task of translating the extracted

knowledge to the expected and predetermined form.

This task requires the use of a syntactic or other kind of analyser which creates

materials  for  a  knowledge base  to  store.  Moreover,  the  system should  constantly

perform self-learning using existing and continuously gained new experience, adding

the new knowledge (patterns, rules) to the base.

In  addition,  knowledge-based  systems  can  perform  a  teaching  function.

Knowledge  bases  can  be  used  to  create  training  and  testing  programs,  to  create

detailed analytics on the mastering of materials by topics, and to identify the rules

and dependencies.

Next can be mentioned the task of  maintaining the data integrity of systems.

Integrity is understood as the coherence (consistency) of information. On the one

hand, this means checking the materials for conflicting facts or rules, and, on the

other  hand,  it  is  about  the  aforementioned  syntactic  and  semantic  integrity  of

references. With the increasing volume of materials, this task becomes all the more

difficult for “manual control”.
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This  can  also  include  the  task  of  storing  corporate  knowledge,  issue  that  is

relevant  due  to  the  direct  dependency  of  a  company’s  performance  from  the

knowledge of its employees, which is always includes the “human factor” (specific

worker can resign from the company before he shares his accumulated knowledge,

and so on).

To the next task of a knowledge-based system can be given the general name task

of classification.  The process of solving it is different from a similar process that

uses  neural  networks,  where  the  input  is  usually  raw data  from the  object  being

classified or the object itself (for example, a picture).  Then the input is classified

based  on  non-obvious  calculations  of  the  neural  network.  But  in  the  case  of

knowledge-based system the input should be the features themselves in a specific,

formalized form. Since mathematical operations (for example, processing a picture in

order  to  extract  the  features)  are  not  provided  in  a  knowledge  base,  the  neural

networks (and other mathematical modules) must do a preliminary processing of the

input data in order to solve this task (for example identifying on a picture the facts of

the presence/lack of a certain kind of curves and/or their quantitative characteristics).

This data is then used as the input of a knowledge-based system.

A more general case of the classification task is the task of assessment. Here, the

methods or means of reaching the goal can be assessed in terms of its effectiveness;

the level of certainty that some event or scenario will occur can be calculated; the

result itself can be assessed for compliance with the initially set goals.

To this also relates the task of predicting, which includes, for example, choosing a

more likely scenario of the further sequence of events based on the current indicators

of the process, rules, and accumulated practical experience.

The  task  of  control  in  technical  systems,  which  involves  maintaining  of

designated  objective  functions  of  control  task  at  certain  intervals,  also  requires

interaction with other subsystems – for example, with a system that interconnects

with the main control loop and its object, to which control actions are sent, that are

chosen by the system based on technological parameters from sensors, history, and so

26



on. Here the control signals can also be processed in advance using mathematical

tools. Knowledge-based systems within the technical systems control are capable of

solving uncertainties (will be explained in the fourth section of this guide).

In the case where a system is initially focused on working with the user, consulting

and helping them with decision making, it can be assigned to the class of  expert

systems. At the same time, it should be noted here that not any consulting system can

be called expert, since for this, the latter should have three mandatory components:

- the knowledge base itself;

- inference engine (reasoner);

- user interface with a subsystem of explanations.

In connection with this, any expert system can be asked the following questions:

- In which of the knowledge representation languages is the base implemented?

- According to what principle does the inference engine work,  and how is it

realized?

- How is the information displayed to the user transformed in order to take on a

readable form?

However,  at  the  heart  of  any  knowledge-based  system  is  a  knowledge  base.

Therefore, in this book, we will look at, in turn, all the tasks and steps connected with

preparing knowledge, the software implementation of its storage, and with its use.

Now let’s study the types of knowledge and the forms of its representation in order

to move further along in this area.

Classification of knowledge

Knowledge can appear in three main forms: facts, terminological axioms and role

axioms.

Fact is an assertion which either describes the relation between two individuals or

fixes  belonging  of  an  individual  to  a  certain  class.  The  relation  r between  the

individuals a and b is denoted as r <a,b> or arb, and the belonging of individual a to

class  C as a:C.  The  totality  of  all  the  facts  is  called  a  system  of  facts  and  in

international terms ABox (assertional box).
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Terminological  axiom  is  an  assertion  that  fixes  either  the  equivalency  of  two

classes or the inclusion of one class in another. In the first case, the equivalency of

classes C and D is denoted as C ≡ D, while in the second, the inclusion of class C in

class  D is  denoted  as  C ⊆ D.  The  totality  of  terminological  axioms  is  called  a

terminology of concepts, denoted as TBox (terminological box).

Role axiom is an assertion which indicates either a transitivity of some role or the

equivalency of one role to another, or that it is a subrole thereof. In the first case, the

transitivity  of  the role  isMadeOf  is  denoted with the axiom Tr(isMadeOf)  [Zolin,

2018]. The equivalency of the roles canCause and canResult is denoted as canCause

≡  canResult,  similarly subrole is written as  products  ⊆ results.  The totality of role

axioms is denoted by RBox (relational box).

We will consider axioms in more detail later in another section of the guide.

Here,  the  meaning  of  the  term “role”  should  be  highlighted  separately.  In  the

assertion

roboticArm hasPart effector

the element “hasPart” can be called the role, property, predicate, relation. All of these

terms, albeit similar, are nevertheless not equivalent: for example, the predicate is

equivalent to the predicate in an assertion and is expressed by a property, but the

property can act not only as the predicate but as the subject and object as well.

However, this concerns the classification of knowledge according to form and not

according  to  content.  Content-wise,  knowledge  can  be  classified,  for  example,

according to its depth and source.

The first feature of classification is especially indicative, since it is an important

characteristic for assessing the overall quality level of a knowledge base: does the

knowledge  base  contain  deep  knowledge  or  does  it  only  present  superficial

knowledge? The latter is synonymous with knowledge that is obvious or clear to any

non-specialist, for example,

 a cat is an animal

a neural network has neurons.
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This kind of knowledge can be created in large amounts but expert experience and

skills are not required to produce them. This means that in most cases they are not of

value.

It is clear that the main part of any knowledge base should be created from deep

knowledge. An example of such knowledge is,  for instance,  the assertion that the

simultaneous  combination  of  specific  values  in  specific  intervals  obtained  from

specific sensors leads with a specific degree of certainty to a specific malfunction.

Another example is the knowledge that, in order to improve specific maneuvers, a

specific aircraft requires specific equipment with specific (well-defined) settings.

On the other hand, knowledge can be classified according to its source as primary

or secondary. This classification is important in terms of storing knowledge: primary

knowledge is  obtained during direct  interaction  with the  source,  while  secondary

knowledge is obtained from analyzing literature describing the original  source.  In

connection  with  this,  knowledge  obtained  from  an  encyclopedia  (including

Wikipedia) is secondary, while from scientific articles and reports is primary.

Furthermore, topic-wise, knowledge can be divided into the following types.

What-knowledge describes the properties of an entity (instance, class or relation)

and its belonging to a class (or its inclusion in a more general class), for example:

-tank 102 has a critical temperature of 94 degrees C,

-a neural network is a mathematical model.

Why-knowledge describes a cause-and-effect relation between individuals.  It is

especially  worth highlighting that  this type of  knowledge describes independently

(often uncontrollably) occurring consequences of some actions or events:

- an increased level of liquid in a tank triggers a sensor,

- the incorrect value of the checksum causes a delivery error.

What-for-knowledge, unlike the why-knowledge, always implies the intention of

completing some action and describes its desired result:

- press button 6 for a smooth decrease in temperature,

- Start() function is needed to activate the transfer of cargo.
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How-knowledge directly  describes  processes:  their  sequence,  conditions  for

transitioning to new steps, interaction between active participants:

- to  reduce  the  costs  of  production,  50% of  resources  should  be  invested  in

increasing productivity, 30% for reducing permanent expenses and 20% for

reducing irregular expenses,

- two conditions need to be met in order to ship goods: receipt of payment and

availability of goods in stock.

When-knowledge describes the sequence and time when some event or  action

takes place:

- first, the application is launched in 20 seconds, then each query is processed in

no more than 1.5 seconds,

- after launching, each robot of the mobile group waits for two seconds for a

query  from  the  leader,  otherwise  protocol  for  determining  the  leader  is

initiated.

It is worth mentioning separately that, along with the semantic and logical models

of knowledge that are examined in this study guide, there are frame and production

models as well. About the latter it can be said that they are built by creating sets of

rules in the form “if – then”. For these goals, various means can be used: from logical

languages like “Prolog” to neural networks, which in this case should be developed

from the beginning as a model of cause-and-effect connections between their input

and output.

Now, having an idea of the classification and types of knowledge, we can move on

to the first big task of knowledge engineering – the task of obtaining it.

Knowledge obtaining

The first question which should be asked of knowledge engineering is: what is the

source of knowledge?

In  order  to  answer  this,  it  should  be  remembered  that  knowledge  is  specially

structured data which can be used by machines, software agents, for their tasks. An

example list of tasks is presented above. This kind of knowledge is stored in a limited
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set  of  forms  –  semantic  knowledge  bases,  neural  networks,  text  code  in  special

languages  and  so  on.  They  are,  in  fact,  the  final  stores  of  knowledge,  where

knowledge is presented in a clear form for machines, in a formalized form.

However,  since  in  reality  knowledge  is  more  often  used  by  people  and  not

machines, it is obvious that people did not require storing knowledge in this form

until recently. In connection with this, all the knowledge accumulated by people is

presented at best in a  structured form, in other words, in the form of schematics,

graphs with named connections, sequence diagrams and other forms.

However,  in  order  to  transform  knowledge  into  any  form,  knowledge  in  any

implicit form (at least in the form of text, outlines, notes) should be obtained from its

original source, which is, unfortunately, for the most part is a human.

Knowledge elicitation

In the case of direct work with a human, we encounter the process of knowledge

elicitation [Gavrilova, Kudryavtsev, Muromtsev, 2016], which means the process of

a  knowledge  engineer  (analyst)  interacting  with  an  expert  (a  human  source  of

knowledge)  with  the  goal  of  identifying  and  recording  expert  knowledge  (their

reasoning process when making decisions, the structure of their presentation of the

subject area).

This process is particular in that it is difficult for the human alone to obtain and

formulate the content of their own mind – sometimes impossible to do on one’s own,

due to the fact that, firstly, this process is uncustomary for practice-oriented people

and therefore requires developed reflex skills, and, secondly, it is almost impossible

for an expert to trace the whole chain of their own reasoning themselves: for them,

some inferences and conclusions are so obvious that they do not realize the missed

intermediate conclusions and presuppositions in their own reasoning. For example,

the reasoning which appears obvious to an expert

instability of the magnetometer to interference -> replacement of the

magnetometer is required

is of value only when revealing the intermediate steps:

31



instability of the magnetometer to interference -> high dispersion of readings ->

inability to determine the direction of the robot -> replacement of the

magnetometer is required.

Thus, the goal of a knowledge engineer is, from the one side, to identify and clarify

all obvious steps in the reasoning of an expert.

From the other side, an expert can believe that they have less knowledge than in

reality, and therefore it is necessary to also “retrieve” from their minds content which

they themselves may not be aware of.

In most cases, knowledge elicitation involves the direct interaction of an analyst

(group of  analysts)  with an  expert  (group of  experts).  Depending on the type  of

behaviour of the analyst, methods of communication are separated into passive and

active.

Passive methods include observing the work of an expert, listening to his lectures,

and so on. What is special about these methods is the minimal interference in the

expert’s direct work and wasting of his time.

Active  methods  can  also  be  divided  into  individual  and  group.  The  first  type

includes  interviews  and  questionnaires,  while  the  second  includes  organizing  for

experts “brainstorming sessions”, round tables and various foresight and role-playing

games. This means that in both cases the analyst does not simply record material, but

asks questions and heads the work of the expert group.

The forms of  work can vary,  but  the focus  should  always remain  constant:  of

special  importance  is  deep knowledge,  which can be represented  content-wise  as

knowledge that describes, for example,

- the nature of how elements, indicators are connected. This can include formal

dependencies,  schematic/functional  diagrams,  knowledge  of

compatibility/inconsistency of certain properties or their meanings;

- cause-and-effect  relations,  which  can  include  sequences/instructions  (which

actions are correct or incorrect for which goals in which conditions), rules of

goal  setting and rules of  planning,  property indicators  (which external  signs
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indicate  which internal  properties  are  present,  and vice versa),  indicators  of

future events: signs for predicting the future;

- various classifications: hierarchy of classes (how association to one class means

association to another), class features (individuals belonging to a certain class

have a number of which features), rules of classification: the presence of certain

properties implies association to a class with its features, reliability level of its

classification signs, and its priority.

It is this knowledge which should make up the main content of the results from

working with experts.

Knowledge acquisition

However,  the  process  of  obtaining  knowledge  from  experts  can  be  somewhat

automated:  part  of  the  process  of  acquiring  knowledge  is  passed  on  to  machine

agents.

This work names a different phenomenon: knowledge acquisition – the process of

an expert filling a knowledge base using specialized software tools. The idea is that

the  control  program  itself  suggests  questions  to  the  expert,  stores  and  specially

structures his answers.

These tasks, of course, should be done using not simply a knowledge base, but a

knowledge base management system (KBMS) – a special software package which

allows  for  the  knowledge  bases  themselves  to  be  filled  and  changed  (including

independently), while also implementing an interface for interaction between the base

and user.

At the same time, the system can either take information from an expert in the

form of previously completed templates, or by directly asking them questions and

holding a dialog with them, each time taking into account the previous answers – in

other words, implementing a certain strategy.

In the first case, for example, tabular forms are prepared for the expert, to which

they can enter information on their own. So, one of the fields of the table can be

“Possible  forms of  emergency situations” when producing nitrogen.  Another field
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opposite each situation can contain its most common reason, and in the third – a node

of the system which can be damaged, and so on. Next, KBMS uses this table for

input, transforms all the information into code in one of the knowledge representation

languages. In this case, the analyst compiling the templates should know clearly in

advance what knowledge will be required from that specific expert.

Organizing  a  dialog  system  (second  case)  is  required  in  situations  where  the

analyst is poorly aware of this area of knowledge, when it is impossible to clearly

articulate in advance questions for the expert or to compile a ready template. In this

case, it can be relied on that any area is described by the three forms of knowledge

already mentioned: facts,  terminological  axioms and role axioms. Meaningfully, it

should  result  in  assertions,  the  content  of  which  will  reflect  the  forms  of  deep

knowledge given, for example, in the previous paragraph.

Thus, an example sequence of actions in this case can be the following:

1. The program asks an expert to list the basic, most important concepts used in

their field. Later on, they will become the main classes (which in this context

also have the sense of concepts).

2. The program requests that the introduced concepts be defined, denoting them

as subclasses of more general (broader) concepts.

3. The program requests the features of the introduced classes to be specified.

4. The program asks that the rules of classification (assignment to the specified

classes) be indicated.

Then we proceed to a system of facts.

5. The program requests critical examples of the subject area and asks that they

be connected to the classes to which they belong. For example, indicating the

main accidents discussed and described is an instance of the class Accidents.

6. The program asks for all of the most important literal (datatype) properties to

be listed (i.e., existing values in the form of numbers or strings, and not in the

form of other examples) for each example. For instance, the Wi-Fi module is

characterized  by  a  maximum  level  of  consumed  current,  a  maximum  and
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minimal range of connection between two points, and so on. Pay attention that

this is about the properties themselves and not about their values.

7. The expert enters the values of the specified properties, the ones which are the

most important to know, as well as the restrictions for possible values of the

properties (their acceptable intervals, the number of possible values within the

properties of one individual, and others).

8. Inputting the most important types of relations with other examples of the same

or another class – such properties are called object properties. They should be

entered for each instance.

9. Inputting restrictions and role axioms.

10.Connecting  instances  by  assigning  the  relation  between  them.  This  can  be

cause-and-effect (as error factors and the malfunctions they lead to), clarifying

the nature of the relation (mutually exclusive, compatible) and others.

During input, KBMS should check the input data for correctness and not move to

the next stage until a required amount of information has been entered during the

previous stage.

After the expert has entered all the information, the inference engine should be

launched. This engine fills the knowledge base with additional assertions, logically

following from the entered information – exactly for this the role and terminological

axioms are described.

The last step is to check the formed knowledge base for integrity (consistency).

Machine elicitation of knowledge

The process of automatic elicitation of knowledge from large stores of information,

for example, from the internet or from libraries, can be looked at separately.

Here,  we  need  to  separate  automatic  knowledge  elicitation  from  unstructured

sources and that from structured sources.

In the first case, the same features and difficulties that occur when working with a

real-life expert during elicitation are made worse by the fact that, when working with

unstructured sources, the “elicitor” program perceives all the words it comes across
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as just a set of symbols and has no idea about their semantic meaning. In connection

with this, during a simple search using keywords, the resulting material cannot be

guaranteed to be relevant (the searched word may not be the subject of the text but

instead simply found there).  Therefore, for  a more reliable search of unstructured

texts, natural language processing programs, for example, are used. These are capable

of not only producing a parsing of sentences but can also build a semantic network

based on it.

The other task is to search and extract materials on pre-structured data. Here, we

are talking about knowledge existing in an open base network, on which a search can

be  gradually  conducted.  Examples  of  this  are  the  portals  DBpedia.org  and

Wikidata.org. The process of sending requests to such stores we will discuss later. For

now, we will describe the work logic.

Here, the work begins not by listing the most important concepts, but by defining

one main example.

A request is sent to a knowledge base to find the element of interest to us, for

example, a robotic arm. If it does not exist, then the grammatical form of the searched

element should be changed, a synonym selected, or a search conducted on another

open knowledge base.

When the element is found, knowledge elicitation about it means searching on all

relations in which it takes part:

- request for all classes to which it belongs;

- request for all literal properties and their values;

- request for all object properties and instances which it is connected to by these

object properties;

- request for all synonyms and other names of the same searched element, and

repeating with them all specified steps.

As a result, we get a number of assertions on the searched element in the form of

assertions.
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Knowledge formation

Knowledge can be obtained not only through conversation with an expert or by

analyzing structured/unstructured sources, where it is already presented in some (at

least implicit) form. Knowledge can be formed directly from data in which it was not

originally embedded. This means, for example, data in the form of a table/graph of

the dependency of productivity on the temperature and pressure in the circuit of the

object.

In this case, it is about forming knowledge – the process of analyzing data and

identifying non-obvious patterns using a special mathematical apparatus and software

tools.

A good example of this process is training a neural network on some tabular data,

that gives as a result models of the dependency between different system parameters.

This  can  also  include  various  methods  of  dependency  approximations,  cluster

analysis, and others.

Methods of automatic hypothesis generation, for example, the JSM-method, can be

placed in a separate group. It is based not on purely mathematical calculations like

neural  networks,  but  on the so-called formalization  of  plausible  reasoning,  at  the

center of which are logical operations.

In the framework of knowledge formation, we are interested most of all in two

subproblems, each of which we are required to solve: the problem of inferring new

(correct)  knowledge  and  the  problem  of  removing  contradictory  (incorrect)

knowledge. In both cases, we will use rules for this on base of which the formation is

made.
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PART 2. STRUCTURIZATION. TYPES OF LOGIC. TRIPLETS

Concept of structurization

After elicitation, knowledge is stored in an implicit (unstructured) form, such as

outlines,  tables,  interview notes,  text  files,  etc.  This  may be enough to carry out

human activity based on this knowledge, but it is not enough for computer systems.

Why?

Since practical use of knowledge requires that it be well-ordered (structured), a

human  is  forced  to  engage  in  structuring while  learning  and  reflecting  on  the

material – in other words, highlighting important connections in a data stream and

forming assertions ready to be translated to knowledge representation languages.

Structuring usually results in diagrams and graphs reflecting the nature and number

of connections between elements. Likewise, it can also give tables, formulas, and so

on.

However, a human usually performs this operation implicitly (if not dealing with

the building of diagrams). They are not taught how to order the contents of their

thought  process,  but  each  person  nevertheless  does  this  in  his  head.  Thus,

unstructured  material  will  be  enough  for  work,  since  the  person  can  elaborate  it

himself.

However, software agents by default do not have this ability, therefore the ability

to structure or formalize needs to be partially or completely realized by a program, or

already formalized material to enter into the knowledge base needs to be prepared.

Next,  we  will  look  at  both  of  these  paths.  In  any  case,  a  knowledge  engineer

experiences  the  need  to  solve  the  problem  of  transferring  knowledge  from  an

unstructured form to a structured one.

The presentation forms resulting from structuring can still not be used directly by

the software agent, but the programmer working with the knowledge bases is able

without expert help to translate knowledge to a knowledge representation language.
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Let’s now discuss the process and ways of structuring by groups.

Structurization in graphic representation

The first  and,  possibly,  the most  well-known tool  for  structuring knowledge is

mind maps.  They are  widely used for  mapping conceptual  structures in teaching,

when designing software systems, in business and in a wide range of other fields.

These  maps  (when  composed  correctly,  of  course)  are  very  illustrative.  Their

peculiarity is that the main object of study is located at the center of the map as the

main concept and from it grow branches of the main areas of consideration, followed

by a further nodal structure. An example is the map in Fig. 4.

Fig. 4. Mind map.

At  the  first  level  of  the  generalization,  we  find  the  elements  “Employees”,

“Customers” and so on, while at the second, we find “Number”, “Experience” and so

on. In total two levels are shown.

At the first glance these maps are simple, but developing them requires the skills of

systematic analytical thinking. The main rules of constructing these types of maps are

as follow.

1. Rule of uniformity (at each level there should be no concepts which are differ

from others, not one should be “odd”).
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2. Rule of gradual generalization: the transition to the next level of generalization

should be understandable even for a reader who is not a specialist in the field.

Furthermore, there are also recommendations for building:

- Fonts of different sizes should be used when mapping concepts of different

levels;

- colors are useful for highlighting branches and levels;

- visual images and pictures also increase the visual impact of a mind map.

The  presented  in  Fig.  4  map  contains  some  typical  omissions  and  errors,  for

example:

- there are too many objects at the first level, which makes perception of this

map difficult;

- these objects have a different level of generalization, i.e., the concepts are too

dissimilar;

- the branches have a different depth of detail;

- images and colors are not used, but are important in mind maps.

Practice  shows  that  students  begin  to  understand  the  particularities  of  radiant

(centered or hierarchical) thinking after the third or fourth constructed map with strict

analysis of their mistakes.

However, the drawback of mind maps in terms of structuring knowledge is the

fuzzy denotation of relations between the elements, since they are more adapted for

demonstrating a tree structure of arbitrary fragments of knowledge.

In this regard, concept maps (c-maps) can provide greater unambiguity and visual

effect.  These  concept  maps  are  made  up  of  nodes  and  directed  named  relations

connecting these nodes. The connections can vary in type, for example, “is”, “has the

property  of”,  “leads  to”  and  so  on.  Any  development  of  such  a  map  involves

analyzing the structural interactions between individual concepts of the subject area.

A concept map is represented in the form of a graph, where vertices describe concepts

(classes or their instances), and the directed named edges connecting these vertices

are the relations (connections).
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In the simplest case, building a concept map comes down to the following steps:

- determining the context by asking a specific focusing question that determines

the main topic and borders of the concept map;

- selecting classes (concepts) – basic terms (concepts) of the given subject area

(usually no more than 15–20 concepts);

- building  connections  between  elements  –  determining  the  relations  and

interactions;

- streamlining  the  graph  –  clarifying,  eliminating  unnecessary  connections,

removing contradictions.

By building c-maps when creating knowledge bases or expert systems, specialists

get the most complete idea about the subject area. It is worth emphasizing again that

c-maps are not only the goal but also the method for a deeper understanding of the

specifics of the subject area. While building c-maps the semantic connections of our

memory interact with visual information, the connections are rebuilt, generating, in

turn, new knowledge.

Fig. 5 presents a concept map for the education system of a city, developed within

the System project of Moscow [Gavrilova, Onufriev, 2016].

Fig. 5. Example of a concept map.

The  most  common  mistake  when  creating  c-maps  is  the  incorrect  marking  of

relations between elements: it may be that the generic term is improperly defined
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(“maple” – is a type of – “forest”) or that it lacks useful information (“Electronic

skin” – is a type of – “skin”).

In order to construct a c-map on a random area of knowledge, its skeleton should

first be constructed. It is built out of the fundamental classes – the most important

concepts. After this, the most frequently mentioned individuals are designated, which

are immediately associated with classes and with each other. Next comes the stage of

designating the rules: role and terminological axioms.

This way can be seen the process of obtaining knowledge is in general.

Among  graphic  structuring  tools  can  also  be  mentioned  entity-relationship

diagrams  (ER-models),  which  are  more  focused  on  designing  databases,  but

nevertheless, they offer visual depictions.

In order to structure cause-and-effect relations, a so-called argument map can also

be used, which can be called a particular case of c-maps with relations of “because”,

“however”, “but”, and statements as nodes.

In the case of describing how- and when-knowledge, and in any situation where it

is  required  to  indicate  the  sequence  of  actions  and  conditions,  tools  such  as  a

sequence diagram, swim lane diagram (Fig. 6), Gantt chart can be used.
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Fig 6. Sequence diagram.

Fig. 6 demonstrates the expressive ability of such diagrams to describe sequences

and instructions: it presents an algorithmic model developed by the authors for the

interactions of agents in a multi-agent system for production control [Kovalevsky,

Onufriev, 2019].

A diagram of classes and other types of presentations used in UML-diagrams are

worth a separate mentioning. Their description is easy to find in relevant sources.

However, when using UML, it is important to constantly keep in mind the semantic

value of all the elements used. For example, the relation of aggregation in the class

diagram can be considered to be equivalent to the relation “used in” or “includes” in

c-maps.
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Text structurization

At the same time, the most flexible and, likewise, customary remains structuring

knowledge as text. Here, we are not limited in tools. However, if we use this form, it

is  more  logical  to  choose  a  text  for  this  which  would  be  most  suitable  for  the

subsequent  formalization,  in  other  words  transferring  to  code  in  knowledge

representation languages.

The basic form which we will use is the triplet form. In fact, this is an assertion

which is clearly separated into three (thus the name) parts: subject, predicate, and

object.

Here the subject is analogous to the subject known in the syntactic analysis of

sentences. Important: the subject is not a sentence but an assertion. The subject is

expressed by one word or by a word combination.

The predicate, which, as was already stated, can take the name “role”, “relation” in

different  sources,  corresponds either  to  the  verbal  predicate  in  an  assertion  (“can

cause”, “prevents”, “has”), or as the verbal part of a compound nominal predicate (for

example, “is”, “was”, “is considered”).

The object, which is sometimes called the “value of a property” (since a property

takes the role of predicate) corresponds either to a supplement (minor sentence) in the

case  of  a  simple  verbal  predicate  (for  example,  “skidding”,  “book”,  “installation

№2”, “car”), or as the nominal part of a predicate in the case of a compound nominal

sentence (“operation”).

Triplets made up of these elements are given below:

Type of 
predicate

Subject Predicate Object

Verbal
braking can cause skidding

damage to motor №3 leads to necessity of landing
Nominal removal is an operation

So, any assertion of any complex form can be presented by a finite number of

triplets. However, in the case of preparing materials for formalization, the following

points should also be taken into consideration.
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1. Despite the rules of declination in different natural languages, all three of the

elements in a triplet should be in the nominative case, since otherwise it will

be necessary to introduce into the KBMS a module which, despite the different

endings, will recognize the same substance in words with the same stem. By

default, they will be perceived as being different.

2. As was already mentioned, any triplet contains exactly three elements. Tools for

processing knowledge representation languages recognize them by the presence

of a space between them. In connection with this,  any triplet should contain

exactly two “space” signs.

Taking into account these remarks, the following triplets were received from the

table above:

breaking canCause skidding

damageToMotor3 leadsTo NecessaryLanding

removal is anOperation

Thus,  we  have  a  list  of  assertions  in  the  form of  triplets,  which  can  then  be

formalized.

It  is  worth  noting  that  c-maps  can  be  divided  into  triplets  very  organically.

Furthermore, an export of the map in the form of triplets can be provided in c-map

editors (for example, “CMapTools” – an open source software).

When creating triplets, an analyst chooses themselves which properties to use and

which individuals/classes will be needed for this. And while we are not restricted by

anything it is however recommended to use maximally unified predicates: inOrderTo,

causes/isCausedBy, consistsOf, and so on, to simplify future use of the triplets. In

order to clarify and introduce details (how it is used, how it is caused) additional

triplets are to be used, apart from unified ones. However, for standard relations, it is

better to use those given above since, when working with a big knowledge base made

up of thousands of triplets, the variety of relations makes it significantly harder to

search with it and make queries.
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Discussed  below  is  the  situation  where  more  complex  assertions  need  to  be

presented in the form of triplets, for example: “The lecture on knowledge engineering

is at 2:00pm on Monday in lecture hall 310 and at 4:00pm on Thursday in lecture hall

314”. When attempting to create such a series of triplets:

lecture – time → 2:00pm, lecture – time → 4:00pm

lecture – place → 310, lecture – place → 314,

we find ourselves in the situation where time “2:00pm” is not at all connected to

place “310”, due to which it becomes impossible to understand from these triplets at

what time and in what place a lecture will take place since they are not grouped in

any way.

The  solution  to  this  problem  is  to  create  some  grouping  elements,  which  are

intentionally denoted in Fig. 7 as “????”, since it matters little what will be contained

in them. If this type of node has no name and is used exclusively for connecting, then

it is called a blank node.

Fig. 7. Grouping nodes

The next important point has to do with the fact that any class can be considered to

be the totality of its individuals or as the concept itself. However, in triplets, a class is

always  used  as  a  concept.  Since  the  individuals  (class  instances)  or  the  classes

themselves can act as the subject or object of a triplet, it is often tempting to say, for

example, that the class Student is connected to the object “Knowledge engineering”
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with the help of the predicate “attendsCourse”. This, however, would be a mistake

because clearly what we are trying to say with it is not “the class Student attends a

KE course”, but “all instances of the class Student (i.e., all students – individuals of

this class) attend a KE course”. The difference is significant. If we want to talk about

“all individuals of a class”, we need to use rules (which is talked about below).

The class Student itself is used very limitedly and carefully in triplets, since using

the class Student is equivalent to using the concept “student”. Thus, if the subject of a

triplet is the class Student, then its predicate can be either the connection subclass-

class (subClassOf), or other relations with classes (for example “equivalent class”), or

a  defining  relation  (which  will  be  examined  in  the  section  “Ontology”),  or  the

features of a class as a set (for example, “class power”).

In  order  to  create  more  complex  logical  expressions  (including  rules),  logical

languages are needed.

Structurization using formal languages

Propositional logic

When structuring knowledge, the use of well-known formulas and mathematical

notations  should  not  be  disregarded,  since  the  task  is  to  describe  unstructured

knowledge as clearly and systematically as possible. However, the alphabet of simple

mathematics is not complex enough to describe the most frequently seen assertions

with familiar formulas. It has other goals.

The formulation  of  assertions  and their  description is  the  work of  logic,  more

specifically, its individual divisions, e.g., mathematical logic. As part of it, in turn,

specific  languages  can  be  considered.  Let’s  discuss  three  of  them:  language  of

propositional logic, language of first-order logic and language of description logic.

The simplest of those listed is propositional logic. Its language is characterized by

the fact that its elementary unit is a statement: a coherent expression, for example,

“Moscow  is  the  capital  of  Russia”.  Propositional  logic  does  not  operate  with
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individual  concepts:  it  is  more  focused  on  analyzing  the  interconnection  of

statements.

This leaves a mark on its language, which contains the following elements:

- negation (¬): ¬а is true when а is false and vice versa. Note that any statement

must be either true or false;

- following or implication (→): for example, а → b means that from statement а

follows (logically) statement b;

- disjunction ∨, logical OR. For example, а ∨ b is true if the first or the second

statement is true;

- conjunction ∧, logical AND. For example, а ∧ b is true if both the first and the

second statement are true.

The following complex statement from  The Little Prince, Saint-Exupéry, can be

taken as a construction for notes: “If I order the general to turn into a seagull and he

fails to follow the order, then the fault is mine not the general’s” [Zyuz’kov, 2015].

In order to write it down, it is necessary to make four statements: а – “I order the

general to turn into a seagull”, b – “the general can turn into a seagull”, c – “I am at

fault”, d – “the general is at fault”. As a result we get:

а ∧ ¬b → c ∧ ¬d.

Note that each statement written in this language represents not a class, not an

instance,  but  a  whole  triplet  at  once.  Therefore,  it  is  impossible  to  describe  the

connections between the examples themselves and with the classes in this language.

Another disadvantage of the language of propositional logic, which is significant in

terms of structuring knowledge, is the lack of tools for working with generality: a

statement concerning some set of elements does not differ in form from a statement

of one element.

However,  this  language  can  fully  be  used  as  an  intermediary  on  the  way  to

adopting more complex tools for describing facts and axioms. For example, thanks to

it we can formulate the rule:

[ (а → b) ∧ b ] → а,
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which can then be checked for creating false assertions, and using certain tools, the

fallibility of this rule can be made certain.

Languages for describing sets and relations

The next important step to correctly understanding logical processes in the area of

knowledge is to become familiar with the set theory, especially in terms of formal

descriptions  of  the  sets  themselves  and  the  relations  between  their  individual

elements, since later on it will all be used when developing projects.

Any class should be understood either as a concept itself, or as a set of individuals

included in the class (at the same time, we remember that when writing in triplet

form,  the  first  is  always  meant,  and  when  writing  with  sets  –  the  second).  In

connection to this, if a class А is a subclass of class В, then in terms of sets, we can

say that  А ⊆ В or set  А is included in (is a subset  of) set  В,  in other words: all

individuals of class А are also individuals of class В. This inclusion is not strict, and

any set is a subset of itself.

A strict inclusion is denoted with the symbol  ⊂, and if  А ⊂ В, then А is its own

subset of В, i.e., elements exist which belong to the latter and not the former. In terms

of classes, this means the existence of individuals of the second class not belonging to

the first.

The operations that interest us here the most are union  ∪ and intersection ∩, as

well as the negation ¬. For example, ¬A in terms of classes means the totality of all

individuals not belonging to class А, and if we say that А ∪ В ≡ С, this means that all

individuals belonging to either class А or class В are also individuals of class С.

Here, we are especially interested in De Morgan’s laws, for example:

¬(A ∪ B) = ¬A ∩ ¬B,

because then ¬С = ¬A ∩ ¬B,  i.e.: all individuals not belonging to class  С cannot

belong to class А or class В. It would seem we are talking about obvious conclusions,

but they have mathematical accuracy and are easily formalized into programing code,

which  can  check  hundreds  of  knowledge  base  classes  for  the  presence  of  any

contradictions.
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It is important to also look at the relations that appear in set theory.

We are mainly interested in binary connections between objects of sets, since this

will subsequently be applied when formalizing connections between individuals in

knowledge bases.

The relation between two individuals is described as: ρ = <x, y>. Next, the content

of ρ should be clarified, for example, ρ = {<x,  y> ∣ x is the father of y}. This has a

clear connection to the language of triplets.

In order to analyze and modernize knowledge bases, inverse relations are required.

Thus, we can determine that  ρ−1 {<x,  y> ∣ x is the son of  y}. In other words, if the

knowledge base contains some x and y which are connected by one of these relations,

then it is possible to conclude that у and х are inversely related.

The compositions of the relations are also of interest. Thus, if we introduce the

relation  z {<x,  y>  ∣ x is the brother of  y}, then the composition  ρ ○  z <x,  y> will

denote “х is the uncle of у”.

At the same time, there is a theorem on inverse compositions:

(ρ ○ z) -1 = z -1 ○ ρ -1

This  is  well-illustrated  by the  concept  map in  Fig.  8,  where  the  names of  the

inverse properties are highlighted in red.

Fig. 8. Compositions of relations and inverse compositions.

Besides the composition of properties and inverse properties, attention should also

be given to subproperties. The main idea can be explained in the following way:
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ρ <a, b> & ρ ⊆ z   →   z <a, b>.

In order to solve the following problems of creating knowledge, it is important to

also  pay  attention  to  the  existing  types  of  relations,  since  this  gives  additional

material for a logical conclusion and for checking for contradictions.

The first type is transitive relations, an example of which is a relation like ρ <x,

y>,  from which it  can be concluded from  ρ <a,  b> and  ρ <b,  c> that  ρ <a,  с>.

Otherwise, this can be written as ρ = ρ ○ ρ. A classic example of a transitive relation

is  ρ = {<x, y> ∣ x is a subclass of y}.

Likewise, other relations of interest to us are the so-called  symmetric  relations.

This means that from the connection ρ <a, b>, it logically follows ρ <b, a>, in other

words, the relation is inverse to itself: ρ = ρ-1. An example of this kind of relation can

also include “is related”.

Here we can also speak of an antisymmetric relation, where from the connection ρ

<a, b> , it logically follows the impossibility of the connection ρ <b, a>. Introducing

this rule into the knowledge base can be used for searching for contradictions within

it.

A reflexive relation implies that for any element we get ρ <a, а>.

A functional relation implies the uniqueness of the object to the subject. Thus, if

an individual is connected by a functional relation to two elements, then from this

follows the identity of the latter:

ρ <a, b> & ρ <a, c> → b = c.

First-order logic

The language of predicate logic, also known as the language of first-order logic

(FOL),  is  devoid  of  the  disadvantages  characteristic  for  the  propositional  logic

language.

Its first feature, in fact, is the use of predicates. The term “predicate” from first-

order logic should not be confused with the term “predicate” from the set “subject”,

“predicate”, “object” in triplets.
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The predicate will be a function with an arbitrary number of input parameters and

which gives as output either “True” or “False”. Thus, if the predicate E(х) means “х is

equipment”, then the value of the predicate E(engine) is “True”.

The predicate in the first-order logic always plays the role of not just a part of the

sentence  predicate  but  of  the  whole  sentence  predicate.  For  example,  if  х is  any

individual, and S(х) means: “х is a student”, then the construction S(Nikolay) means

that “Nikolay is a student”. If we look at the triplet “Nikolay is a student” as a triplet,

then its predicate (in terms of triplets) is only one word, “is”.

Pay attention to the fact that the semantic content of the predicate S(х) is selected

randomly according to the set task and the subject area.

In this example, the unary predicate S(Nikolay) corresponds to the whole triplet,

correlating the individual “Nikolay” with the class (set) “Student”. Overall, any unary

predicate can be reduced to this: to assigning an individual to a set (i.e., to the class).

This even has to do with verbal predicates: to say that instance х runs, it should be

assigned  to  the  predicate  R(х)  –  beings  which  can  run  (or  are  running  in  that

moment). Note that this is nevertheless assignment to a class.

Binary predicates like Р(х, у) can be used in order to describe connections between

elements, in our case, individuals. For example,  L(х,  у) can mean “х launches  у” –

i.e., in this case, the binary predicate denotes a whole triplet. This also agrees with the

relations discussed earlier in set theory.

The number of parameters and the semantic content of the predicates is determined

by  the  user  themselves,  therefore  any  predicate  should  be  previously  described

verbally.

The second feature of the language of first-order logic is the presence of certain

denotations called quantifiers:

-∀ – universal quantifier;

-∃ – existential quantifier.

Thanks to these quantifiers, we can talk about not only specific individuals, but

also about a set of individuals, selected according to some criterion. For example,
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∀х.R(х) means: “anyone who can run”,∀х.L(х, engine) means: “everything that launches engine 5”,∀х.[ R(х) & L(х, engine) ] means: “everything that runs and launches engine 5”.

Next,  we can already construct  statements  that  will  be applicable  to  the entire

specified set.

Note that in the shown examples, each predicate describes a criterion according to

which a set of elements satisfying it is chosen. Meanwhile, a combination of several

such predicates is possible using logical connectives, for example, the logical AND

(symbol “&”).

Universal quantifiers are used to derive new knowledge based on the old, as well

as for checking existing knowledge for contradictions.

Existential quantifiers are used in our tasks not that often and can be used for the

second problem relating to checking for inconsistent assertions.

The rules relating to predicates should also be mentioned separately.

The first ones describe a method for transferring from one quantifier to the other:∀x.A(х) ≡ ¬∃x.¬A(х); ∀x. ¬A(х) ≡ ¬∃x.A(х),∃x. A(х) ≡ ¬∀x. ¬A(х); ∃x. ¬A(х) ≡ ¬∀x.A(х).

The second set of rules describes expanding logical addition and multiplication

when acting with predicates:∀x.[ A(х) ∨ B(х) ] ≡ ∃x.A(x) ∨ ∃x.B(x),∀x.[ A(x) & B(x) ] ≡ ∀x.A(x) & ∀x.B(x).

Language of description logic

A special  role  can  be  assigned  to  the  following  tool:  a  set  of  languages  of

description logic – rather complex, and therefore perfectly adapted to the tasks of

developing and describing knowledge bases.

The  basic  language  of  description  logic  is  ALC  (Attributive  Language  with

Complement). It is aimed at describing the relations between classes and describing

the connection of instances and classes, therefore, it initially contains not only the
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concepts  of  class  (e.g.,  С),  individual  (e.g.,  а)  and relation (e.g.,  R),  but  also the

constructions of type: a:C (individual belonging to a class), aRb (connection of two

individuals by a relation), the earlier described elements of the system of facts ABox,

as  well  as  C ≡  D  (equivalence  of  classes)  and  C ⊆ D  (inclusion of  one  class  in

another), elements of the terminology TBox. The same is true for the role axioms

Rbox.

The classes  ⊥ and T are also introduced, where the first denotes an empty class

(empty set), and the second – a class-universum, whose subclass will be any of the

possible classes.

Furthermore, within the language, there are so-called  universal restrictions  like

∀R.C and existential restrictions like ∃R.C. In both cases, R is the property and C is

the  class.  Here,  “restriction”  is  understood  as  the  condition  itself  which  divides

individuals  into  those  that  satisfy  it  and those  that  do  not,  as  well  as  the  set  of

satisfying individuals itself. In the latter case, the concept of restrictions is close to

the concept of class.

In  order  to  deal  with  universal  and  existential  restrictions,  it  is  necessary  to

introduce the concept “successor by role (by property)”. If we have the triplet  aRb

(i.e., R<a,b>), then the individual b is called a successor of individual а by property

(role) R (or R-successor).

Now, ∀R.C can be defined as a set of individuals where all R-successors belong to

the class С. In other words: those without one R-successor not belonging to the class

С.  An  example  of  this  can  be  the  restriction  ∀hasAuthor.Poet  –  is  a  set  of  all

individuals whose authors are only poets (there is no author who does not belong to

the  class  Poet).  In  the  language  of  predicate  logic,  this  can  be  written  as:  ∀х,y

[ hasAuthor(х, y) & Poet(y) ].∃R.C can be defined as a set of individuals among R-successors of which there is

at least one individual from class  C. For example,  ∃writtenWorks.PhDThesis – is a

set of all individuals whose written works contain at least one belonging to the set

54



(class) of PhD theses. In the language of predicate logic, this can be written as: ∀х∃y

[ Р(х, y) & PhDThesis(y) ].

There is yet another simpler construction:  R.ind, where  ind is the individual and

not the class, as in the two given examples. This type of restriction describes a set of

individuals  whose  R-successor  is  a  specific  individual.  For  example,

hasAuthor.PushkinAS is a set of all individuals whose author is A.S. Pushkin.

When adding a new functionality to the ACL language, its name also changes in

order to reflect its expressive ability. For example, when adding to the standard three

restrictions numerical ones like ≥nR and ≤nR, which denote a set of all individuals

having  no  less  than  (no  more  than)  n R-successors  (this  is  called  a  cardinality

restriction),  and the letter  N  is  added to the name. When adding the restrictions

≥nR.С and ≤nR.С (a set  of all  individuals with no less than (no more than)  n R-

successors from class С, the letter Q is added (Qualified cardinality restrictions). This

can  result  in  a  very  complex  and  flexible  language.  We  recommend  becoming

familiar with the extensions of ALC logic.

An important feature of such descriptions is the fact that this method can also be

used to describe knowledge which does not yet exist in the data base but which will

be  derived  from existing  knowledge  or  added  by  an  analyst  in  the  future.  Such

descriptions work on the possibility of carrying out knowledge base training.

Describing rules

So, a rule is any assertion (and, therefore, triplet) which deals not with specific

individuals but with their set. The latter, in turn, can be described as the association of

individuals  to  one  general  class  or  by  the  fact  that  they  all  satisfy  a  general

requirement, called restriction.

In connection to this, all rules can be divided into two types: those applicable to a

class and those applicable to a set of individuals designated by a restriction.

The simplest form of the rules from the first  group is “class-class”. This name

should  be  understood  as:  “If  an  individual  belongs  to  a  specific  class,  the  same

individual at the same time belongs to another class”.
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However,  this  exactly  corresponds  to  the  occurrence  of  one  class  in  another,

therefore these types of rules are the simplest and are expressed as a triplet

Class1 — isSubclassFor → Class2

and can be interpreted as “any individual belonging to class 1 also belongs to class

2”.

These  rules  can  also  be  applied  when  there  is  a  formulation  with  a  verb,  for

example, the rule “any robotic arm requires precise settings” can be formulated as a

triplet

roboticArm — subclassFor → EquipmentRequiringSettings.

When using methods of predicate logic, this assertion can be written, for example,

as (denotations for predicates are chosen randomly)∀х.[ M(х) → Sett(х) ].

One interesting fact to note is that any triplet whose subject is a class is often a

rule.

Note also the rules for overlapping and joining classes such as∀х.[ А(х) & B(х) → C(х) ];∀х.[ А(х) ∨ B(х) → C(х) ].

They are useful in that they create a background for applying De Morgan’s laws

mentioned earlier to produce new rules.

The rules that use existential quantification make it possible to find triplets in the

knowledge base which are contrary to the rules and to exclude them. For example, if

we have the rule ∀x ¬∃у[ С(x) & B(x, y) ],

then finding the connection В(х,у) in the knowledge base is an error, and the triplet

describing it should be deleted.

Rules with the following form work in the same way:

¬∃x[С(x) & B(x, soundSensor)].

Another  example  is  the  class-property  rules.  They  also  consider  a  set  of

individuals restricted to one class, and prescribe them certain properties/relations. For
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example, we suppose that any synaptic nucleus matrix (in the considered area) has 3

dimensions.

The  indicated  class  will  be  given  the  name  NucleusMatrix.  Note  that  it  is

unacceptable to be comprised of a triplet

NucleusMatrix — hasDimensions → 3,

since this property refers to all individuals of the class and not to the class itself as a

concept, which was discussed above.

In order to express that any individual of the class NucleusMatrix has a dimension

of 3, we use the language of first-order logic. For this, we introduce the predicate

NM(x), which signifies that individual  x belongs to the class NucleusMatrix. With

this  designation,  the  construction  ∀х.NM(х)  describes  a  set  of  all  individuals

belonging  to  NucleusMatrix.  Now  we  can  replace  the  incorrectly  written  triplet

(shown above) with the correct one:∀х.NM(х) – hasDimensions → 3.

To represent  it  fully  in  the language of  first-order logic,  we will  introduce the

binary predicate Dim(x, y), meaning “individual  x has  y  dimensions”. Then we get

∀х.[ NM(х) → Dim(х, 3) ].

The rules are displayed on a concept map in the following way (Fig. 9).

Fig. 9. Introducing rules to a concept map.

57



Rules of the second type, in which the set subject is determined not by belonging

to the general class but by an arbitrary restriction, are more complex since the analyst

is free to select the subject constraint in the formulation of the rule.

The simplest  of  these are formulated in a way which is already familiar  (from

description logic): R.ind, which means “a set of all individuals related by the property

R to the individual ind”. If this is translated from the language of description logic to

the language of first-order logic, we get∀х.R(х, ind).

After writing the subject in this way, it can either be assosiated with a certain class,

or it can be assigned some value of a property.

In the first case, the rules obtained belong to the  property-class type (unlike the

class-property type rules described above). An example of this kind of rule is “anyone

whose list of studied subjects includes research work is a fourth-year student”:

discipline.RW — is → 4yearStudent.

An example of the second type of rules (property-property) is the following:

discipline.RW — discipline → undergraduatePractice,

this means: everyone who has the discipline “RW” also has undergraduate practice.

Note that the subject of such assertion rules can be not only simple restrictions, but

also the universal restrictions looked at earlier and existential restrictions, presented

in the language of description logic. For example, “Everything that can lead only to

malfunctions should be assigned to a class “Negative factor”:∀causes.Malfunctions — is → NegativeFactor.

We will also consider rules which concern uniqueness (which will also not be a

finite list):

-uniqueness of an individual in the class:∃xA(x) & ∀x, y(A(x) & A(y) → x = y);

-uniqueness of a follower by property:∀с,x,y(A(с,x) & A(с,y) → x = y);
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- uniqueness like “Only individuals of class А are individuals of class В” (e.g.,

only fish belong to creatures able to breath under water):

¬∃х. [ ¬R(x) & B(x) ], from which we get ∀x [ B(x) → R(x) ].

The rules for describing relations are described in exactly the same way as it was

described in the section on describing relations in set theory.

In general, any rules can be described using the languages of first-order logic and

description logic thanks to the flexibility of the latter.

Ontology

Earlier the various methods for structuring knowledge were looked at. However,

they do not  tell  about  creating  a  comprehensive  system,  since  they are  aimed at

arranging individual segments of knowledge. Now we need to look at the result of

structuring as a single whole.

After structuring knowledge, we get a set of the following elements:

1. individuals (examples) – entities selected from a set of others in this subject

area which are of the most value to the tasks which the knowledge base was

created for;

2. classes – these are the concepts or sets to which the individuals belong;

3. relations (these are connections, roles, properties) – these are subdivided into

object,  denoting  relations  of  class-class,  individual-individual,  individual-

class,  and  literal  (datatype),  denoting  relations  in  which  the  object  is  a

numeric or string type of value, for example maximum pressure (105), model

(“Grunfos 300”), inscription (“Class for describing governing bodies”). Here

we should point out a unique type of relation: this is the determining relations

or  relations  of  determination,  thanks  to  which  it  is  possible  to  not  only

designate for any class its generic term (parent class), but also to determine its

distinguishing properties and their values through the generic term.

4. rules (axioms) – assertions directly about a set of elements. They are used to

infere  new  knowledge  or  to  check  the  whole  consistent  ontology  for
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contradictions.  This  can  include  role  axioms and terminological  axioms,  as

well as the other rules looked at in the relevant section.

Ontology  – this is a computer-adapted form of describing a certain subject area

which  includes  the  set  of  classes  C,  their  relations  to  each  other  R (including

determining I) and the rules A (axioms):

{C, I, R, A}.

Note that individuals are not included as part of the ontology. Thus, the ontology is

the backbone for filling the knowledge base with individuals in the future.

Ontologies can be classified according to various features. First, we will discuss

their classification according to the content of the specified components.

The simplest type of ontologies from the ones we are interested in are dictionaries.

They  contain  only  two  components:  classes  and  their  definitions  (defining

properties), which can here act as a literal property or as a semantic structure with

object properties and their values. In the first case, the class “Bird” can be defined

through the literal property “definition” and the value of the latter “a warm-blooded

chordate covered with feathers”. In the second case, the class “Birds” is defined as

follows:

bird – defining property → type of covering – defining value → feathers.

It is clear that there can be several defining properties and their values.

Note that  in  dictionary ontologies,  there  are  no other relations between classes

besides defining ones, and axioms are also missing.

A more complex structure in terms of connections is taxonomy, which is a set of

classes  connected  either  by  only  a  “subclass-class”  relation,  or  also  by  defining

relations.  This  is  a  hierarchical  structure presented in  the form of a  tree.  A clear

example of taxonomy is the presentation of goods in online stores, where items are

divided into groups (sets, classes) and then subgroups and so on:

Ultrasonic sensors — subclass → Sensors — subclass → Measuring equipment

A similar structure is  partonomy – a set of instances (specific representatives of

classes)  connected  to  each  other  by  only  part-whole  relations.  Here  it  is  very

60



important to not confuse the relation “part-whole” with “instance-class”. The leg of a

chair is part of the chair, but it is not a type of chair (as opposed to a fold-up chair).

An analytical engineer represents a (type of) person but is not a part of a person (as

opposed to a hand). For a more comprehensive understanding, it is recommended to

study section 10.3 of the textbook by Albert Nikolaevich Knigin [Knigin, 2002].

The next type of ontology is a thesaurus – a dictionary which contains, along with

literal and object definitions of classes, the terminological axioms discussed earlier,

i.e.,  subclass-class  relations  and  class  equivalence  relations.  Relations  of  class

synonymy can also appear here. There may also be indications of classes antonyms,

homonyms, etc.

Next,  the  more  rules  and  restrictions  are  introduced,  the  more  heavyweight  an

ontology is  called.  In the most  heavyweight,  we can also find expressions in the

language of description logic and in the language of first-order logic, and restrictions

freely  constructed  by  analysts.  Of  course,  all  axioms of  the  knowledge  base  are

processed by a special software module, Reasoner, which has access to the rules and

facts.

Furthermore,  ontologies  can  also  be  classified  according  to  the  scope  of  their

content.

Thus, the simplest type of ontology is  Task ontology, in which the solution to a

specific problem is described. In general, this includes classes connected to goals,

tools  of  achievement  (including  equipment),  methods  of  measuring  results,  key

quality indicators – specifically for one selected task.

A slightly broader ontology in terms of content is Domain ontology. They describe

general  concepts  (classes)  of  a  domain,  but  without  being  bound  to  tasks.  For

example, metallurgy may be described as a whole, the occurring processes, methods

for managing them, and type of personnel, etc.

At  the  junction  of  task  ontology  and  domain  ontology  there  is  Application

ontology. It looks at several tasks of one domain.
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More general is the  Top-level  ontology (Upper ontology, Foundation Ontology),

which can describe the most general concepts like Events, Processes, Tasks, and even

Space/Time. Therefore, it can be used as a general template when developing more

particular ontologies.

DBpedia as a tool for the machine structurization of knowledge

The use of ontologies can be considered on the example of DBpedia – a large

international  project,  developed  and  sponsored  by  a  community  of  users.  The

objective of the project is to structure information contained in another, also open,

project,  specifically:  Wikipedia.  The  latter  contains  a  large  amount  of  useful

information. However, due to its lack of structure (clearly, in terms of knowledge

engineering), its use by software agents is made difficult.

The idea is to structure part of the information presented in Wikipedia in the form

of  triplets,  then  to  describe  it  in  knowledge  representation  languages.  However,

taking into account the variety of pages, this required creating a universal tool for all

of  them  in  order  for  the  various  pages  to  be  structured  in  the  same  way.  This

structurization tool required a mechanism for grouping Wikipedia pages and it was

found in the so-called Templates.

On the webpage https://en.wikipedia.org/wiki/Alexander_Pushkin, for example, if

one switches to source code view, the following construction can be seen:

{{Infobox writer
| birth_name = Aleksandr Sergeyevich Pushkin
| image = Orest Kiprensky - Портрет поэта А.С.Пушкина - Google Art Project.jpg
| ... = …
| birth_date = 6.6.1799 (26.5)
| death_date  = 10.2.1837 (29.1)
| ... = ...
| ... = ...
}}

This is  the so-called page template,  whose name,  in this  case,  is  Writer.  More

detailed  information  about  this  is  given  on  the  page

https://en.wikipedia.org/wiki/Template:Infobox_writer.
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Wikipedia also implements a mechanism for obtaining a list of all pages that use

any of the available templates. For example, on the resource https://en.wikipedia.org/

wiki/Special:WhatLinksHere/Template:Infobox_writer?limit=500&namespace=0,

you can see pages of everyone who was classified as a writer. Thus, the presence of a

mechanism for separating into classes and individuals is easily noticed.

Furthermore, each template has fields. For “Writer”, as shown above, these are

“birth_name”, “birth_date”,  “image”,  etc.  Every page relying on a template has a

table in the upper right corner. This table has two columns, thus it forms one triplet

for each of its lines. Here the subject is the page itself (more specifically, the resource

presented on it), the predicate is the content of the first column cell, and the object is

the content of the second column cell.

Consequently, part of the Wikipedia materials are already structured, but this is still

not a result of formalization. Therefore, it was then required to use information about

Wikipedia templates and their fields in a way so that algorithms for the automatic

formalization  of  knowledge  could  be  developed  (translating  them  to  knowledge

representation languages).

It is this mechanism (as with some others) which is implemented in the DBpedia

project. It is described on the resource  http://mappings.dbpedia.org/. The idea is to

map the Wikipedia ontology, which includes the page templates themselves as the

classes and the page template fields as the relation between classes, with the ontology

of DBpedia, which also includes classes and relations (the datatypes included in it

will not be discussed here).

The  process  of  mapping  the Wikipedia  template  with  the  DBpedia  ontology

means indicating,

1. which ontology class of DBpedia a specific Wikipedia template corresponds to;

2. which of the ontology relations/properties of DBpedia each of the template’s

fields correspond to.

An important point here is the fact that Wikipedia is multilingual, which creates a

potential (and often occurring) possible situation where templates are duplicated in
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different languages (like “Писатель” and “Infobox writer”). Since they, in fact, mean

the same thing in content, both should be assigned to the same class on DBpedia. The

same can be said about the multilingual duplication of properties (for example, “имя”

and  “name”).  They  should  also  be  assigned  to  the  same  Ontology  Property  on

DBpedia.

To  implement  the  said  above  the  following  resource  was  used:

http://mappings.dbpedia.org/.  The  mappings  themselves  (with  the  example  of

Mapping ru:Писатель – “writer” in Russian language) take the following form:

{{ TemplateMapping
| mapToClass = Writer
| mappings =

{{ PropertyMapping | templateProperty = Имя | ontologyProperty = foaf:name }}
{{ PropertyMapping | templateProperty = Оригинал имени | ontologyProperty = foaf:name }}
{{ PropertyMapping | templateProperty = Псевдонимы | ontologyProperty = pseudonym }}
{{  PropertyMapping  |  templateProperty  =  Имя при рождении |  ontologyProperty  =
birthName }}
{{ PropertyMapping | templateProperty = Дата рождения | ontologyProperty = birthDate }}
{{ PropertyMapping | templateProperty = Место рождения | ontologyProperty = birthPlace }}
{{ PropertyMapping | templateProperty = Премии | ontologyProperty = award }}
{{ PropertyMapping | templateProperty = Сайт | ontologyProperty = foaf:homepage }} 

}}

Example taken from the section Mapping ru:Писатель.

Note  that  “templateProperty”  indicates  the  Wikipedia  template  field,

“ontologyProperty” – the property from the DBpedia ontology, and “mapToClass” –

the class of the DBpedia ontology.

After adding mapping, a script is launched after some time which finds all pages in

Wikipedia made according to the specified template, and it formalizes the values of

the  fields  into  code  in  the  knowledge  representation  language  according  to  the

DBpedia ontology.

At the end of the work, the systems obtain pages which are presented to users as

such:  http://dbpedia.org/page/Alexander_Pushkin.  At  the  same time,  in  the  source

HTML code of such pages, links to the knowledge base code are found, for example:

http://dbpedia.org/data/Alexander_Pushkin.n3.
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Next, we will discuss the particular knowledge representation languages and the

approaches and processes of translating knowledge into them.
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PART 3. FORMALIZATION

Methods for formalizing knowledge

Knowledge in a format convenient for software agents (we are only interested in

these types of formats!) can be presented in various ways. The process of translating

knowledge into a machine-readable (and machine-applicable) form from any other

form is the process of formalization (representation).

To complete this action, first of all, there needs to be non-formalized knowledge,

and, second, to know which form this knowledge is going to be translated to.

There are certainly more than one of these forms.

The first of these is neural networks. As mentioned before, knowledge is stored in

them in the mathematical form of representation. If we speak about neural networks

without feedback, we mean weight matrices, each of which describes a topology of

connecting  neurons  in  the  appropriate  layer,  and  activation  function  matrices.

Different rules and different assertions can be stored here but only implicitly. This,

however, does not contradict the solution to formalization.

Neural networks are used in problems of processing mathematical (including those

converted from graphic form) data, when the incoming data needs to be classified, or

an evaluation,  diagnostics, prognosis needs to be completed using this data, or to

immediately calculate them and convert them to other signals.

Neural networks are a specific type of mathematical model. In a more general case,

knowledge can be stored as mathematical models, which include all types: physical,

chemical, geometric, and other forms. It can be presented as matrices and array data

structures,  as  functions  in  programming  languages,  as  project  files  of  various

modeling environments (Computer aided design – CAD), etc.

The  following  format  of  representation  can  be  presented  in  languages  for

describing production rules, for example, Prolog. The latter, at the same time, offers

a single environment for storing knowledge and for inputting, extracting, changing
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and using it for completing logical operations. Here you can set triplets with a simple

declaration, for example, the triplet

Robot(arm)

means that the arm is a robot belonging to this class. This note more often than not

corresponds to first-order logic.

We can also give the rule

Equipment(x) :- Robot(x),

which denotes the rule we are familiar with “Class-class”.

The follow-up request

?- Equipment(arm)

will have the meaning “TRUE”.

Another  form of  non-mathematical  knowledge  representation  is  semantic  web

technologies (hereafter SWT), which provides the maximum possible flexibility for

the content of knowledge bases and can also be integrated into projects using other

formats. At the same time, SWT are a very specific type of technology, developed by

the WWW Consortium. Therefore, the most complete information with updates can

be found on the official web portal.

To develop knowledge-based systems, it is required, of course, to combine various

forms of knowledge representation and storage.

Next, we will discuss in more detail semantic web technologies, which are fully

capable of claiming the role as the “heart” of knowledge-based systems.

Resources in semantic web technologies

Semantic web technologies are inextricably linked to the concept of Linked Data,

which desires to bring order to the internet in the following way: right now it is a set

of documents (including dynamically generated ones) linked to each other at best by

hyperlinks, but not semantically related.

A  semantic  connection  implies  that,  for  example,  from  the  page  with  the

description  of  control  system  of  some  type,  the  programming  agent  (not  only  a

human) can go to the page with the description of the components of this system, to
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the page where it  is  applied,  with a  description of  the developer,  etc.  This  is  all

possible when explicitly setting the semantic meaning of the connections themselves,

when the connections are described and comprehended (i.e., not simply stated that the

developer  is shown in the link, but also described that there is a “developer”, which

characterizes this property, etc.).

The  concept  of  Linked  Data  means  exactly  this  type  of  connectedness,  which

implies  that  different  users  create  web  documents  and  apps,  at  the  same  time

establishing a semantic connection with other already existing documents.

It  is  because of this that  formalization using Semantic Web Technologies starts

with  the  concept  resource,  which  means  an  atomic  unit  of  knowledge  (class,

individual,  predicate),  having its  own description and being the subject  of one or

several assertions. In other words, everything worth examining in a knowledge base.

In connection to this, it is worth immediately indicating the elements which are not

resources,  since  resources  and  non-resources  are  formalized  in  different  ways.

Numbers and constant-strings are not resources. If a knowledge base indicates, for

example, the maximum range of some measurer, it will simply be a number (15.65).

There is not need to explain anything about this meaning. It is not a separate subject

to discuss. It is equal to a text comment for users on the same measurer: “a laser

rangefinder is used for taking measurements”. On its own, this string, enclosed in

quotes, is not part of any other assertions and is only the object of the assertion (not

the subject).

Any numbers and text strings within SWT are called literals. The latter, unlike any

resources, do not have any identifiers, which serve as a unique name for resources.

Taking into account the idea of Linked Data, it is easy to understand the very first

problem which users run into: this is the millions of resources which are publicly

available and, therefore, should differ from each other in some way.

What is used to identify resources on the internet today? The unique identifier is

URL –  Uniform  Resource  Locator,  more  commonly  known  as  “page  address”.

However, this is not the only method which makes it possible to separate from one
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another the potentially endless number of elements, without losing all the possibilities

of URL. A more general case of the latter is URI – Uniform Resource Identifier,

which  does  not  necessarily  come  down  to  an  internet  address,  since  it  can  be

represented  not  by  a  URL,  but  by  a  URN – Uniform Resource  Name,  which is

compiled as follows

URN:<namespace>:<name> (of course, without the space).

Thus, if you are not required to include the real address of an element (or the latter

does not exist), instead of

“http://my.fake.com/individuals/object1”

it is more correct to use

“URN:individuals:object1”.

In both cases, the full identifier of the element can be separated into its  actual

name and the part preceding it, called the  namespace.  This term is related to the

grouping function of the latter. After all, both “http://my.fake.com/individuals/” and

“URN:individuals:” can be interpreted as some directory which stores, in this case,

individuals. Likewise, the bigger the knowledge base becomes, the bigger the role

grouping its elements into namespaces takes on.

There can be one namespace for any element; there can be three (for classes, for

predicates, for individuals); there can be more, dividing different types of individuals

into  different  spaces.  SWT  do  not  regulate  the  overall  number  and  degree  of

structuredness  of  the  spaces,  therefore  this  problem  is  solved  by  the  developer

themselves.

Due to the fact that namespaces usually contain more than one element (or one

space is used in the whole knowledge base, which is not preferred but not forbidden),

we observe a constant repetition of the namespace in a triplet. This means that when

designating it with a short name, you can increase the readability of the knowledge

base code and reduce its size.

If we designate the namespace “URN:individuals:” with the shortened “inds”, we

can use  “inds:object1” instead of “URN:individuals:object1” in any mention of the
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elements. Such designations as “inds” are called prefixes, each of which denotes its

own namespace.

At the same time, the prefixes themselves and their corresponding namespaces are

entered  into  the  knowledge  base  code  by  the  developer,  declaring  them  like

representing variables.

This is the same as in the case of using namespaces in high-level languages. The

spaces can either be created or joined to already existing ones. At the moment we are

approaching the concept of Linked Data, since including existing namespaces into

their own databases and spreading their own publicly available namespaces with the

elements contained in them serves to create a universal network of interconnected

elements of various knowledge bases, which together make up a single base.

In order to standardize at least the basic elements common to all storages, several

publicly  available  namespaces  were  created  with  the  most  frequently  seen  and

important classes and predicates. These are discussed below.

Thus, at the lowest level of SWT we need to answer the question about which of

the proposed elements of the knowledge base will be resources and which will be

literal. To the point, this is where the line between semantic knowledge bases and

neural  networks  lies:  the  first  involves  an  object-oriented  approach,  when,  for

example, a choice between class examples or operating their properties occurs, which

is problematic to implement using neural networks.

Notations in semantic web technologies

When a method for describing each element separately is determined, the question

arises about the methods for connecting resources with resources and resources with

literals. In fact, here we move onto issues of writing the code of the knowledge base

itself.

Issues  of  notation – these  are  problems with syntax,  since in  regards  to  SWT,

notation  is  generally  the  name  given  to  developed  knowledge  representation

languages, each of which has its own syntax. Several of them have been developed:

-RDF/PHP,
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-RDF/XML,

-N3/TURTLE,

-JSON-LD and some others.

We will take two triplets of the following form

roboticArm isUsedFor detailsMoving AND roboticArm hasPart endEffector

and discuss how they will look completed in each of the designated notations.

In the notation RDF/PHP:

array ( 'urn:test:roboticArm' =>

array ( 'urn:test:isUsedFor' =>

array ( 0 =>

array ( 'type' => 'uri', 'value' => 'urn:test:detailsMoving', ), ), 'urn:test:hasPart'=>

array ( 0 => array ( 'type' => 'uri', 'value' => 'urn:test:endEffector',),),),)

In the notation RDF/XML:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ns0="urn:test:">

<rdf:Description rdf:about="urn:test:roboticArm">

<ns0:isUsedFor rdf:resource="urn:test:detailsMoving"/>

<ns0:hasPart rdf:resource="urn:test:endEffector"/>

</rdf:Description>

</rdf:RDF>

In the notation JSON-LD:

[{"@id":"urn:test:detailsMoving"},

{"@id":"urn:test:endEffector"},

{"@id":"urn:test:roboticArm","urn:test:isUsedFor":

[{"@id":"urn:test:detailsMoving"}],

"urn:test:hasPart":[{"@id":"urn:test:endEffector"}]}]

And in the notation N3/TURTLE:

@prefix test:<URN:test:>.

test:roboticArm test:isUsedFor test:detailsMoving;

test:hasPart test:endEffector.
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Due to the comprehensibility and readability of the last notation, we will use this

one from now.

TURTLE (terse RDF triple language) involves representing triplets in the form of a

subject, predicate and object, simply separated by spaces. At the same time, there

should  be  no  spaces  inside  each  of  these  elements.  The  only  exception  is  string

literals, which are enclosed in quotes, and in which the Cyrillic alphabet can be used

and text can be written in natural language:

test:roboticArm  rdfs:label  “robotic arm”.

It should be mentioned again that the string literal “robotic arm” also does not have

a prefix,  which means that  it  is  not  included in any namespace,  since it  is  not  a

resource and, therefore, does not have an identifier (URI) and cannot be the subject of

any triplet.

All resources must have an identifier, in connection to which prefixes are generally

used to shorten code. These prefixes appear as shown above:

@prefix test:<URN:test:>.
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.

When using a prefix, resources are described in the form

prefix:actual_name,

for example, test:roboticArm.

Here it is important to consider that, when interpreting the code of a knowledge

base, each prefix along with the colon following it (in the example above – “test:”)

will be replaced with content angle brackets (in this example – with “URN:test:”). In

connection to this, it should be made sure that the content of the angle brackets when

representing a prefix ends with the vertical bar. The role of the latter is usually filled

by the symbols “/”, “:” or “#”. Therefore, if the prefix in the example above,  test,

were  described  as  “@prefix  test:<URN:test>.”,  test:roboticArm  would  not  be

interpreted as <URN:test:roboticArm>, but as <URN:testroboticArm>, i.e., we would

have the single name “testroboticArm”. Similarly, without the symbol “#” in angle

72

http://www.w3.org/2000/01/rdf-schema


brackets when declaring the prefix rdfs, the element rdfs:label would be understood

as <http://www.w3.org/2000/01/rdf-schemalabel>.

It should be noted here that the use of prefixes is not a requirement of syntax,

therefore the triplet

test:roboticArm rdfs:label “robotic arm”

can be written in the form

<URN:test:roboticArm>  <http://www.w3.org/2000/01/rdf-schema#label>   “robotic

arm”.

In the case of using an identifier without a prefix, it is strictly necessary to use

angle brackets for each resource.

The  next  important  moment  is  related  to  the  punctuation  part  of  the  syntax

TURTLE.

Each triplet should end in a period except for  shortened notes. The latter means

the  possibility  of  using,  firstly,  instead  of  a  construction  of  three  strings  with

repeating subject and predicate

test:roboticArm test:isUsedFor test:detailsTranport.
test:roboticArm test:isUsedFor test:heavyThingsTransport.
test:roboticArm test:isUsedFor test:researchWork.

the expression

test:roboticArm test:isUsedFor test:detailsTranport,
test:heavyThingsTransport,
test:researchWork.

These are the same three triplets but written in shortened form. For this, the objects

are separated by a comma, while a period is used once.

Secondly, the shortened note can also be used when repeating the same subject in

several triplets, in connection to which a construction from, again, three triplets

test:roboticArm test:isUsedFor test:detailsTranport.
test:roboticArm rdfs:label “robotic arm”.
test:roboticArm rdf:type test:LabEquipment.

can be replaced by a simpler note

test:roboticArm test:isUsedFor test:detailsTranport;
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rdfs:label “robotic arm”;
rdf:type test:LabEquipment.

This  kind  of  note  is  the  most  preferred:  all  triplets  should  be  grouped  (and

preferably sorted) by subject using the symbol “;”, as shown above.

If we remember about the blank nodes mentioned earlier, special syntactic means

of expression are pointed out for them: they are not resources and therefore do not

have an identifier. However, all of them can act as the subject in a triplet.

They are marked by [ ], but in this form, they are used only if the analyst want to

convey  that  there  is  nothing  to  put  in  this  place.  In  the  case  of  using  them for

connections (as in the example with the place and time of a lecture), the predicates

and objects, for which the blank node is the subject, are written directly inside it. In

connection to this, the given example should be coded as:

test:lectureKE test:takesPlace [ test:time “14:00”;
test:room 310 ];

test:takesPlace [ test:time “16:00”;
test:room 314 ].

In other words, the subject of a blank node in square brackets is simply left out. At

the same time, in each of the blank nodes (in square brackets)  in our example, two

triplets are immediately indicated implicitly, without a subject.

However, there is a possible situation where the knowledge base has several blank

nodes which are necessary to distinguish from each other in order to be able to attach

predicates and subjects not in one string, as in the example above, but in random

sections of the code. Blank node identifiers exist specially for this case. Instead of a

prefix, they always contain the symbol “_”. In sum, the example described above

with the introduction of blank node identifiers can take the following form:

test:lectureKE test:takesPlace _:id01;
test:takesPlace _:id02.

_:id01 test:time “14:00”;
test:room 310.

_:id02 test:time “16:00”;
test:room 314.
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Next,  having  discussed  the  simplest  methods  of  working  with  resources  and

literals, we need to move onto the next levels of the basic model of SWT.

RDF and RDFS

The  concept  of  Linked  Data itself  involves  not  only  the  possibility  of  using

publicly available namespaces with the elements that make them up, but also specific

rules for standardization which are focused on being able to use rules common for all

structures.

W3C as the developer of SWT introduced several publicly available namespaces,

designed to provide all users with a single set of elements (classes and properties)

which users will apply for solving specific problems without needing to develop their

own.

As an example, we will look at the problem of denoting that a specific individual

belongs to a class or classes. For this,  it is possible to create one’s own property

test:belongs or something similar. However, if each user creates and inputs their own

properties  for  this purpose,  the use of  anyone’s knowledge base will  first  require

solving the problem of searching for suitable properties for connecting individuals

and classes. However, if this is done by a software agent, the problem is not at all

obvious.

Instead of this, when developing their own bases, all users are suggested to use the

namespace  RDF  (Resource  Description  Framework)  and  the  property  contained

within it  rdf:type, which connects its subject individual to a class, the object, for

example:

test:roboticArm  rdf:type  test:labEquipment.

At the same time, if instead of “rdf:type” we write simply “а”, the interpreters

supporting SWT perceive “a” as a shortened form of “rdf:type”, and therefore, an

even shorter note can be used

test:roboticArm  a  test:labEquipment.

Of course, this implies the pre-declaration of the prefix rdf:

@prefix  rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns  #  >.
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At the same time, this URL is functional, i.e., we can open the file describing all

elements contained in this namespace and pick out among them the ones necessary

for a project.

We will look at the most important elements for us of the namespace RDF.

The class rdf:Statement is used in cases when it is necessary to make an assertion

about another assertion. For example, about the activation of a specific triplet in a

knowledge  base:  if  a  certain  sensor  shows  a  temperature  higher  than  the  given

threshold,  information  needs  to  be  added  to  the  knowledge  base  about  how  the

system is reaching an unstable state.  In this example, the triplet “system hasState

nonStable” should be “inactive” before this  moment and now to be activated.  To

separate these assertions from other examples of the class rdf:Statement, they can be

designated as examples of the class State, which they in fact are semantically.

To distinguish such statuses, an example of the indicated class needs to be created:

test:nonStableState a rdf:Statement, test:State.

Next, we will attach to it the subject, predicate, and object of the triplet, which we

want  to  be  able  to  activate  and  deactivate  using  the  properties  rdf:subject,

rdf:predicate and rdf:object, respectively as follows:

test:nonStableState rdf:subject test:system;
rdf:predicate test:hasState;
rdf:object test:nonStable;
test:status test:Disabled.

Thus, the triplet about the state of a system turns out to be contained within the

knowledge base, not as a triplet, but as three individual components bound to the

example of class rdf:Statement. Further on, in certain conditions, it will be possible to

transfer  to  the  knowledge  base  control  system lists  of  names  (identifiers)  of  the

example rdf:Statement which need to be activated/deactivated. Then, if a program

handler had been previously developed or imported, it can find all activated examples

of rdf:Statement in the knowledge base and add their components explicitly to the
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knowledge base, as well as find all unactivated ones and explicitly delete them from

the knowledge base.

The next important element is the lists,  which are sometimes called collections

(RDF  collection).  They  will  be  of  importance  when  we  discuss  the  problem  of

formalizing rules.

For now, we will look at the structure without semantic explanations:

test:disClasses1  owl:members  (  test:Book  test:Car  test:Person  ).

The elements in the parentheses, separated by a space, also make up the components

of the list  rdf:List. This note is automatically transformed into a rather interesting

bundle:

test:disClasses1 owl:members _:autos1.
_:autos1 rdf:first test:Book;

rdf:rest _:autos2.
_:autos2 rdf:first test:Car;

rdf:rest _:autos3.
_:autos3 rdf:first test:Person;

rdf:rest rdf:nil.

Anyone familiar with lists in high-level programming languages easily recognizes

here the indicators from each previous element of the list to each subsequent one,

more specifically: to each new sublist designated by the identifier of a blank node

_:autosN. Using the elements rdf:first and rdf:rest does not require an explanation,

while the individuals  rdf:nil of class rdf:List are denoted by an empty list, which,

logically, is similar to NULL as a final element.

The main reasons for why it is worth using lists is the simplicity of completing lists

in the knowledge base code (simple listing in brackets) and the presence of special

mechanisms  for  requesting  elements  according  to  their  numbers,  as  well  as  the

display of all elements of the list.

The last point which may interest us in this namespace are the classes rdf:Bag,

rdf:Seq  and  rdf:Alt,  which  are  subclasses  for  rdfs:Container.  Here,  no  special

mechanisms are implemented (unlike with rdf:List) for obtaining elements from the

container, and the code for its creation is written differently:
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test:bag1 a rdf:Bag;

rdf:_1 test:roboticArm;

rdf:_2 test:quadCopter;

rdf:_3 test:laserSensor.

At the same time, the syntax for all  three types of containers is  the same. The

difference between them is semantic:  rdf:Bag includes elements the order of which

does not matter (for example, a list of available equipment); the order designated in

rdf:Seq is important (for example, the order of actions in an emergency situation);

the  container  rdf:Alt includes  mutually  exclusive  elements  (i.e.,  the  very  fact  of

including elements in this container has semantic value).

This is where the entire scope of the namespace of interest to us, denoted by the

prefix rdf:, ends.

Despite  the  presence  of  a  set  of  useful  elements,  they  are  not  enough  for

standardizing certain important descriptions in knowledge bases.  For example, we

can indicate “test:roboticArm a test:labEquipment”, but the object of this triplet, the

class test:labEquipment, does not take on any semantic meaning for software agents,

since rdf: has no tools for establishing connections between classes, let alone tools for

explicitly defining test:labEquipment as a class.

Due  to  the  lack  of  standard  tools  for  solving  these  (and  other)  problems,  the

following namespace was introduced. It is denoted by the prefix rdfs:, which means

“RDF Schema”. In other words, we are talking about linking into a scheme, about

building some system.

Thus, in the indicated namespace with the address http://www.w3.org/2000/01/rdf-

schema# (which is also current and makes it possible to explore the content), we can

find the property rdfs:subClassOf. The purpose of the latter is rather transparent. It

is  necessary only to  clarify that  its  use  for  linking individuals  and classes  is  not

acceptable,  since  the  property  rdf:type  (or  abbreviated  to  “a”)  is  used  for  this.

rdfs:subPropertyOf is used to denote the subproperties.
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Here, of course, we must also mention the class rdfs:Class. If we need to indicate

that test:labEquipment is a class, we should write

test:labEquipment a rdfs:Class.

In other words, any class is an individual of class rdfs:Class. This is one of the rare

situations where the class itself is looked at as an individual. Equally, any predicate

can  be  considered  as  an  individual  of  the  general  class  rdf:Property from  the

previous namespace.

The properties rdfs:label and rdfs:comment are also frequently used:

test:nonStableState rdfs:label “Non-stable state of system”;

rdfs:comment “Instability, action required”.

They help with the task of displaying materials from the knowledge base for users

in  an  understandable  form,  since  they  might  understand  the  structure

test:nonStableState incorrectly.

The last pair of properties we are interested in is rdfs:domain and rdfs:range. At

the  same  time,  the  subject  in  a  triplet  with  any  of  these  properties  should  be  a

property in the role of a predicate in another triplet. In other words, domain and range

are properties of other properties and characterize them.

We will look at the triplet

test:lowBatteryLevel  test:causes  test:WirelessAgentDisconnection.

We can see in this example that the predicate expressed by the property test:causes

has the subject test:lowBatteryLevel and the object test:WirelessAgentDisconnection.

If we want to indicate that the  subjects  of the predicate expressed by the property

test:causes  should  belong only to  the  class,  for  example,  test:ProblemReason,  we

create the triplet

test:causes rdfs:domain test:ProblemReason.

Accordingly, in this case, the individual test:lowBatteryLevel (having the property

test:causes) must be automatically assigned to the class test:ProblemReason.
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The property rdfs:range works the same way, but it regulate the class which the

objects  of the predicate expressed by the described property should belong to, for

example,

test:causes  rdfs:range  test:Problems.

The  namespace  connected  to  the  prefix  rdfs:  also  does  not  provide  sufficient

functionality for our tasks, therefore we need to consider the following. Before this,

however, in order to be able to start working with the knowledge base materials, we

will look at another tool – SPARQL.

SPARQL

We should remember the term mentioned earlier “knowledge base management

systems” (KBMS). KBMS is a software module performing specific actions with the

knowledge base, since the latter is itself only a set of files with code in a specific

notation. In other words, the knowledge base itself cannot provide any functionality

for working with knowledge, besides the direct storage of facts and rules.

KBMS must provide the following functionality for working with knowledge:

- request the knowledge from the base indicated by the user;

- input changes into the base indicated by the user (adding triplets, changing and

deleting them);

- automatic  display  of  new  knowledge  based  on  old  knowledge  (knowledge

inference);

- automatic  check  of  the  knowledge  base  for  inconsistencies  (inconsistency

checking);

- providing integration with other tools of storing and processing knowledge (for

example, with a storage of mathematical formulas and a module for performing

calculations).

Most of these functions are united by the need to request from the knowledge base

the facts and rules necessary to complete them, with a subsequent processing of the

query results. This explains the need for studying and implementing a mechanism for

processing requests when working with knowledge bases.
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In order to accomplish this in the framework of SWT, developers suggested a tool

called SPARQL (recursively denoting SPARQL Protocol and RDF Query Language).

As the name suggests, this tool includes several components at once:

- SPARQL Protocol;

- SPARQL language;

- SPARQL Query Results XML Format.

The need to  introduce the protocol is  justified by the concept  of  Linked Data,

involving the possibility for  different  users to refer  to any open knowledge base.

However, since the latter are physically located on different servers (and in different

countries), one of the simplest methods was to develop a protocol add-on of HTTP to

refer to a server storing the knowledge base containing the needed information.

The software module applying and processing queries in SPARQL, sent there via

the SPARQL protocol, is called SPARQL endpoint. Since SPARQL protocol works

on top of HTTP, for a request from a remote node, it is necessary to send an HTTP

request by IP address or, in general, by the URL address of the endpoint.

The general formula for transmitting a request in the form of an HTTP string looks

as follows:

{URL endpoint}?query={request text in SPARQL}

In  the  case  of  the  popular  endpoint  http://dbpedia.org/sparql,  the  string  will

accordingly look like this (for example):

http://dbpedia.org/sparql?query=select+distinct+%3FConcept+where+%7B%5B

%5D+a+%3FConcept%7D+LIMIT+100

Note  that  since,  again,  the  designated  protocol  works  by  HTTP,  following the

given link already means the request has been sent. Therefore, by following it, the

user will immediately see a table of results.

The table presentation of this result is also not a coincidence and not the idea of the

developers of this endpoint: it is a formatting requirement for presenting results of

SPARQL queries. To clarify, the table is the most convenient form for expressing the

result: each bound variable is in a new column, and each result is in a separate row.
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Of course, presenting results to users is not the main goal of the SPARQL endpoint,

which is in large part needed by software agents to read this data. Here is where the

uniformity of results is fundamentally important. Thanks to it, an agent can send a

request to any active endpoint, and the result from any of them can be processed

using the same algorithm.

The only thing left to understand is the language of the queries itself, which is

inextricably  connected  to  the  term  triple  pattern,  meaning an  arbitrary triplet  in

which one, two or all three of the elements are replaced with variables. The latter are

presented in the form of an arbitrary set of symbols,  starting with the sign ?,  for

example: ?variable, ?newEquipment and so on.

The first thing to note is that, as in the programming language you are used to, the

choice of the variable name does not impact its content in any way. It only impacts

how  comfortable  it  is  for  the  developer  to  read.  Its  future  content  (value)  is

determined by the context of use in the request.

This happens in the following way: the user creates a query containing at least one

triplet  pattern.  When  processing  the  query,  this  pattern  is  superimposed  onto  all

triplets in the base, selecting only those that fit the pattern. Triplets that fit the pattern

are those whose elements match the constant (not variable) parts of the pattern. For

example,  the  pattern  “?equipmentInds  rdf:type  test:Equipment”  is  met  by  all  the

triplets in the base which have the predicate and object,  respectively, rdf:type and

test:Equipment.  When a  list  is  formed of  all  the triplets  which correspond to the

pattern, the query result (if no additional conditions are indicated) will be, in this

case, a list of all the subjects of the triplets corresponding to the triplet (i.e., a list of

resources which have the variable ?equipmentInds in their “place” in the triplet).

The full code of this request is:

PREFIX test:<urn:test:>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?equipmentInds
where
{

?equipmentInds rdf:type test:Equipment.
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}

Note that this request is not to an external knowledge base but to a local one, with

elements  from  the  previously  looked  at  examples.  In  connection  to  this,  the

namespaces and prefixes stated earlier should also be indicated, although the syntax

differs slightly: the symbol “@”  and the period at the end of the statement string are

missing.

The keyword select needs to be followed by a list of all the variables whose values

the requester wishes to obtain, while the request itself is formed after the word where

in curly brackets. The request shown above leads to a list of possible values for the

variable  ?equipmentInds,  i.e.,  the  list  of  individuals  of  the  class  test:Equipment

contained in this knowledge base.

The query

PREFIX test:<urn:test:>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?equipmentInds ?classes
where
{

?equipmentInds rdf:type ?classes.
}

will have an answer in the form of a table of two columns (since two variables are

indicated after the word select), in which each string is an individual-class pair.

The next step for creating more flexible queries is to combine triplet patterns. At

the  same  time,  each  of  these  patterns  should  be  looked  at  as  a  set  of  results

corresponding to it (as a variable value). Then the combination of triplets corresponds

to the combination of result sets (during their overlapping, combination, subtraction,

etc.).

The simplest operation here is overlapping results. Syntactically, this is described

simply by adding another pattern to the query

...where
{

?equipmentInds rdf:type test:Equipment.
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?equipmentInds rdfs:label ?indLabel.
}

Now, the final set of results show only those individuals which are at the same time

described as individuals of the class test:Equipment and at the same time have an

arbitrary  inscription.  Note  that  overlapping  only  works  properly  when  there  are

general variables in “overlapping” patterns. Patterns intersected in this way form a

group of patterns.

If we need to find in the result all individuals of the class test:Equipment which,

conversely, have NO inscription, the structure MINUS {} is entered, subtracting the

second set from the first:

...where
{

?equipmentInds rdf:type test:Equipment.
MINUS {?equipmentInds rdfs:label ?indLabel.}

}

UNION {} is used in a similar way to combine sets.

Also of interest is the command OPTIONAL {}, which allows us to set optional

conditions.  If  they are  not  met,  the  values  of  the  variables  will  not  be  excluded

because it is possible here to have empty cells in the table, i.e., in some strings, the

variable turns out to be unbound to the value. This kind of situation is impossible

without using this command, since in the opposite case, the result is considered to not

satisfy the criteria, and the string is excluded completely.

Separately,  we  will  talk  about  a  request  of  all  the  elements  of  a  list  with  the

example

test:disClasses1  owl:members  (  test:Book  test:Car  test:Person  ).

For this, a query is sent in the following form

...where
{

?x owl:members ?list.
?list rdf:rest*/rdf:first ?item

}
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The next important question is discussing the issue of filtering results. This can be

completed using the keyword FILTER:

...where
{

?equipmentInds  rdf:type  test:Equipment.
FILTER (<condition>).

}

At the same time, the filter always refers to the whole group of patterns because

the string with this keyword can be positioned arbitrarily within the group.

The condition is often connected to comparing the variables to each other (?x = ?

y), while checking correspondence with the resource or literal (?y = test:Class2 or ?z

= 24 or ?y = “Problem”), with a numerical comparison (?z < 44).

Other keywords are also frequently found in the conditions.

For  a  symbolic  comparison  within  FILTER,  regular  expressions  is  used,  for

example FILTER(REGEX(?x,<regular expression>,<flags>)).

To filter only the variable values which are present in the list (any of them), the

keyword IN is used: FILTER(?x IN (test:Book, test:Car) ). Negation: NOT IN.

In some cases, the function bound(?x) may be of interest, and in the negative form

in combination with OPTIONAL {}. This function takes on the meaning “truth”, if

the variable of the pattern has been assigned some value. So, the structure

...where
{

?equipmentInds rdf:type test:Equipment.
OPTIONAL {?equipmentInds rdfs:label ?label }
FILTER (!bound(?label)).

}

allows us to extract individuals of the class test:Equipment which  do not have  any

inscription (in other words, the variable ?label is empty). Thus, we have a filter for

absence.

The condition can be complex and can include the operations && (logical AND), ||

(logical OR) and “!” (logical NOT).
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The last point which is touched on in this section is aggregate functions which

perform calculations on the entire sample obtained upon processing the request. We

will look at only one of these: count(?x), counting in general the number of triplet

patterns  satisfying  the  search  conditions.  Thus,  the  following  request  counts  the

number of individuals of the class test:Equipment.

select count(?equipmentInds ) as ?count
where
{

?equipmentInds rdf:type test:Equipment
}

Note that in this example, no variables are indicated between the words select and

count. Including variables immediately changes the results of the calculations: with

variables present between select and count, the processor computes how many times

in the results each of the various values of the indicated variable is met. In this way, a

query in the popular terminal http://dbpedia.org/sparql with the following form:

select ?author COUNT(?author) as ?count

where

{

?works dbo:author ?author.

}

counts how may works were written by each author shown in the results (technically:

in  how  many  strings  of  the  results  each  author  repeats  in  the  pattern  ?works

dbo:author ?author).

Next, it is already possible to filter out people who are authors, for example, of at

least four works.

select ?author COUNT(?author) as ?count
where
{

?works dbo:author ?author.
}
Group by ?author
having (count(?author) > 3)
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All remaining information about using the query language SPARQL can be found

on the website w3.org.

Using the library dotNetRDF

Everything mentioned above is sufficient to create a simple system for managing  a

knowledge base. At the same time, it is clear that the knowledge base alone cannot

manage itself  – it requires an application which will be installed in it for obtaining

and changing knowledge.  Accordingly,  the management system should be able to

read and write files of the knowledge base in one of the SWT notations. It should be

able to send SPARQL queries and process their answers. It should be able to add/

change/delete triplets and their parts within the knowledge base.

In order to not implement the whole designated functionality manually, multiple

pre-prepared  libraries  should  be  used,  which  exist  for  popular  programming

languages:

- for the developing language C# as part of dotNet – the library dotNetRDF;

- for Python – RDFLib;

- for Java – OWL API.

We  will  further  discuss  interaction  with  knowledge  bases  using  the  library

dotNetRDF. The main principles can be transferred to other libraries and tools of

development.

The main collective term here is knowledge base graph. A graph is a set of peaks

and pointed edges. At the same time, here, unlike with the concept map, the nodes of

the graph are considered to be the individuals and classes, and even the properties

themselves.

All triplets of a knowledge base make up a graph, therefore work with it is carried

out  using the  class  Graph.  Actions  with  the  knowledge base  are  actions  with an

example of the indicated class which needs to first be initialized:

Graph kb = new Graph().
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The knowledge base graph can be completed either by reading from files or by

manually adding/programming individual triplets into the graph.

In the first case, it is enough to create an individual from the class Notation3Parser

(when  using  the  notation  TURTLE)  and  then  using  it  with  the  Load  method,

indicating the address of the read file, for example:

Notation3Parser parser = new Notation3Parser();
parser.Load(kb, @"D:\Ontology\KB\kb.n3");

In the second case, we need to form individual triplets and then add them into the

graph. In this case, the node of the subject, predicate and object of each triplet is

created separately (or is retrieved from the knowledge base using a query). It should

also be taken into account that  there are  URI-nodes,  and there are  literal nodes.

When working with both types, the interface Inode is used:

INode subj = kb.CreateUriNode(“test:equipment”);
INode pred = kb.CreateUriNode(“test:hasMass”);

INode obj = kb.CreateLiteralNode(500);

Next, all three elements are added into the base with one triplet:

kb.Assert(subj, pred, obj);

They can be pre-grouped into a triplet:

Triple trip1 = new Triple(subj, pred, obj);

which can be added with the same method: kb.Assert(trip1).

To delete a triplet from the base, the Retract method can be used in a similar way.

At any moment of time, all triplets of the knowledge base can be seen using the

Triples  properties,  and the result  can be transformed into a list  using the ToList()

method:

kb.Triples.ToList(),

then each of its  elements will  be an example of the already familiar class Triple,

therefore we can retrieve an element from the list:

Triple trip2 =kb.Triples.ToList()[2].
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Next,  using  the  properties  Subject,  Predicate and  Object,  we  can  obtain  the

component  elements  of  the  triplet,  each of  which is  compatible  with  INode and,

therefore, can be used for forming and adding new triplets. Note that there are two

ways  of  working  with  nodes:  by  creating  them  using

CreateURINode/CreateLiteralNode or using preexisting ones, for example:

INode pred = trip1.Predicate;

It  is  also  possible  to  use  nodes  retrieved  from  the  query,  therefore  the  next

important task is to ensure a query is sent to the knowledge base, which also involves

processing its answer. To send the request, the ExecuteQuery method of class Graph

is  used,  whose  input  is  the  string of  the  request  itself.  To process  the  result,  an

example of SparqlResultSet is created, and the result of the query is explicitly brought

to it:

SparqlResultSet rezSet = (SparqlResultSet) kb.ExecuteQuery(queryString)

In this example, rezSet is the list of the individual results  SparqlResult, therefore

we can use the index to access a specific result of the query, for example,

SparqlResult rez = rezSet[5].

At the same time, we must remember that rezSet is the table of results which we

see when processing a query, for example, on the terminal dbpedia.org/sparql. Then

rez is one of the strings of the table, the number of elements of which (as with the

number  of  columns  in  the  rezSet  table)  depends  exclusively  on  the  number  of

variables appearing in the request after the keyword select. Thus, rez is also a list, but

one of already specific variable values.

Table 1 shows two strings from the results of the following query

select distinct ?ind ?indLabel
where
{

?ind a ?Concept.
?ind rdfs:label ?indLabel.

} LIMIT 100
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To obtain the value of the inscription (ind) from the second row of Table 1, we

need to apply it  (taking into account numeration from zero) using rezSet[1][0] or

rezSet[1][“ind”].

Table 1. Part of query results

Ind indLabel
http  ://  dbpedia  .  org  /  resource  /  

Innovation  _  economics  
“Innovation economics”@en

http  ://  dbpedia  .  org  /  resource  /  

International  _  Society  _  on  _  General  _  Relativi  

ty  _  and  _  Gravitation  

“International Society on General 

Relativity and Gravitation”@en

It is very important at the same time to keep in mind that the results of a query can

be used for creating triplets, for example,

INode pred = rezSet[1][“ind”],

and they can also be used to process new requests, for example,

string dynamicQuery = @“
select ?pred ?obj
where
{

<” + rezSet[1][“ind”] + @“> ?pred ?obj.
} LIMIT 100”;

Note that this string of the request is dynamically formed using the results of the

previous request.  Furthermore, in the strings of the request (as in the code of the

databases themselves in TURTLE), when transmitting the complete identifier (i.e.,

without  a  prefix,  the  address  itself)  created  with  a  program  or  taken  from,  for

example, the query results, triangular brackets should be used: <urn:test:equipment>

or <{ rezSet[1][“ind”] }>, where { rezSet[1][“ind”] } is the value of the variable

rezSet[1][“ind”] (of the Node type).

Next, we can move onto the following level of SWT, which we will later on apply

the previously described software toolkit to.
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OWL

The previous level of the basic model SWT has a main disadvantage related to

solving the problem of forming knowledge (checking for integrity and obtaining new

knowledge). More specifically,  it  is  these problems that  require more tools in the

RDFS namespace. The only elements from them which can be used for creating rules

and may in the future be applicable to the formation of knowledge are: rdfs:domain,

rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf. At the same time, the “class-class”

type rules discussed above can be well described with the structure

test:A  rdfs:subClassOf  test:B.

However, the remaining types of rules require other tools of expression for their

description.

To work with them, we need a higher level of the basic model SWT – the level of

the namespace Web Ontology Language (OWL), whose physical address can also be

found in any of the publicly available lists. If we look inside it, we can see that it

contains several elements.

An important clarification needs to be made right away: on its own, the language

OWL is only a common method, a standardized form of representing rules. OWL

does not provide processors with these rules. It has no ready-to-use software tools for

forming  knowledge.  Another  thing  is  that,  if  so  wished,  one  can  find  publicly

available packages which provide some processing. However, these are independent

products.

In order to get a deeper understanding of the process of the work of an inference

machine, we will develop such products ourselves, which also allows us to develop

on  a  “turnkey”  basis.  Therefore,  it  is  necessary  to  study  the  elements  of  the

namespace OWL and understand how they can be used.

The first  of  these,  which we will  start  with,  is  the class  owl:Class,  which is a

subclass  of  the  familiar  rdfs:Class,  but  which  implies  that  these  classes  will  be

applied for logical operations, which should be completed within logical processors
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(in inference machines) and should serve the goals of forming knowledge: solving

two of its known subproblems.

According to these subproblems, we separate the elements into categories, which

will be looked at separately.

OWL-elements for discovering inconsistencies

Inconsistencies in knowledge bases can be expressed in the presence of one or

several facts contradicting one of the rules written in the base (breaking the rules).

Accordingly, to identify inconsistencies, it is first necessary to create and describe all

the rules which regulate the impossible combinations of content of the knowledge

base.

The first element in the list of those used for creating such rules can be called the

property  owl:oneOf, which imposes a limit on the possible examples of a specific

class, indicating their final list:

test:CurrentlyUsed a owl:Class;
owl:oneOf (  test:Arm2  test:MCU6  ).

Accordingly,  using  the  rules  with  owl:oneOf  to  identify  inconsistencies  in  the

knowledge  base,  the  system  should  first  request  all  classes  described  using  this

element (?x owl:oneOf ?y), and then check the individuals belonging to the obtained

classes for the presence of anything not included in the limited list presented in the

rule.

The next element is owl:disjointWith, which allows us to immediately indicate a

pair of classes, to which no individual can belong to at the same time, in other words

– an inconsistency:

test:Car owl:disjointWith test:Book.

However,  this  way  is  not  convenient  to  immediately  indicate  a  whole  list  of

mutually disjoint classes, therefore, in order to avoid prescribing many pairs, it is

enough to indicate the list using the element owl:AllDisjointClasses.

[ ] a owl:AllDisjointClasses;

owl:members (  test:Book  test:Car  test:Person  ).
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Accordingly, if there are several such lists, an individual or a named blank node

needs to be used instead of an empty node.

There  is  also  the  concept  of  disjoint  properties,  which  is  described  using

owl:propertyDisjointWith. The semantic meaning is that two individuals cannot be

connected to each other at the same time by several of the listed disjoint properties:

test:hasSon owl:propertyDisjointWith test:hasDaughter.

Here, we need to mention indicating the types of properties which {indications} on

their  own  are  already  rules.  For  example,  if  a  property  is  irreflexive

(owl:IrreflexiveProperty), no individual can be connected to itself by this property

(this  is  already  a  rule).  However,  if  a  property  is  asymmetric

(owl:AsymmetricProperty), no two individuals can be connected to each other by

this  property  “in  both  directions”  (in  other  words,  it  is  not  possible  for  the

simultaneous fulfillment of aRb and bRa).

There is also the class owl:NegativePropertyAssertion for the flexible denotation

of the unacceptable joining of specific elements into a subject-predicate-object triplet,

for example:

_:np1 a owl:NegativePropertyAssertion;
owl:sourceIndividual test:Arm1;
owl:assertionProperty test:inOrderTo;
owl:targetIndividual test:heavyMassTransport.

For a similar use of a literal property (unlike an objective one), owl:targetValue is

used (instead of owl:targetIndividual).

As with the case of rdf:Statement, such triplets can be presented by one node (in

this example _:np1) and can be activated or deactivated.

OWL-elements for obtaining new knowledge

It is easy to imagine how the already familiar elements rdfs:domain and rdfs:range

can be used to obtain new assertions: if a property is found in the knowledge base

which indicates the domain or range, we find all triplets where it acts as the predicate
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and conclude a new assertion about the fact that all of its subjects, accordingly, or

objects belong to the indicated classes.

This logic should also work for an inference machine in terms of the elements of

the namespace OWL: first we search for a rule, then the background assertion (one or

several), and based on them, we create a conclusion assertion.

Useful  properties  for  this  task  are  those  such  as  owl:SymmetricProperty and

owl:TransitiveProperty. If the property R is symmetrical, the fact of the symmetry

and connection of aRb gives us the conclusion assertion bRa. The transitivity of the

property R and the presence of the connections aRb, bRc give the conclusion aRc.

The property owl:inverseOf works according to the same logic. It can be used to

indicate that two properties are mutually inverse. The inverseness of the properties R

and S and the assertion aRb gives us the conclusion assertion bSa, and vice versa.

To  work  with  the  considered  composition  of  properties,  the  element

owl:propertyChainAxiom is used, showing the composition of which properties this

property is:

test:grandParent rdf:type owl:ObjectProperty;

owl:propertyChainAxiom (  test:parent  test:parent  ).

To describe the classes, owl:unionOf / owl:intersectionOf is often used. They are

used in order to express the following axiom: if an individual belongs to any one/all

classes from the list, it also belongs to the indicated class, for example:

test:FragileEquipment  owl:unionOf  (  test:Sensor  test:Microcontroller  ).

Here it is critically important that the list is a prerequisite, and the class indicated

as a subject is the conclusion, but not the other way around.

To indicate a pair of complementing classes, the property  owl:complementOf is

used as the predicate (in logic “if an individual does not belong to the first class, it

belongs to the second”).

To indicate the equivalence of classes to each other (or to connect class and restrict

them), owl:equivalentClass can be used. This is especially important in the case of
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connecting knowledge bases in which the resource identifiers are presented in the

form of code, like in the example

test:Robot  owl:equivalentClass  <https://www.wikidata.org/wiki/Q11012>.

Similarly, but in relation to individuals, the property owl:sameAs is used.

However, all of the rules looked at are all rather simple in form and do not allow us

to form more complex structures. In connection to this, we need to further look at the

possibility of using OWL for describing the rules of the already discussed description

logic.

Describing description logic

The modification of  OWL 2 includes all  the elements necessary for  describing

description logic.

To  denote  an  empty  class  ⊥,  owl:Nothing  is  used,  and  to  denote  the  class-

Universum T, owl:Thing is used.

The remaining elements are related to the concept of  restriction characteristic for

description  logic,  which  can  be  defined  as  a  set  of  individuals  satisfying  some

condition. The latter is always related to the properties of an individual acting as the

predicate.

Remember what terminological axiom is and which two types exist. At this stage,

it is important to understand the following: in the expressions C ≡ D and C ⊆ D , C and

D can be filled by classes (i.e., their specific URI), as well as by restrictions, which

are usually written in the form of blank nodes, although they can be presented as

named individuals of the class owl:Restriction with their own resource identifier.

Restrictions are always related to the values of the properties, and therefore, the

restrictions are classified according to the nature of the conditions imposed on these

values.

The simplest restrictions are formed as such: “a set of all individuals whose value

of property R is equal to …”. The value of property R (this is the object for the

predicate expressed by the property R) within description logic is often called  R-
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successor.  For  this  reason,  this  restriction  can  be  transformed  as  “a  set  of  all

individuals whose R-successor is…”.

We will look at an example of a rule (terminological axiom) containing this type of

restriction:

test:RoboticArm a owl:Class;

owl:equivalentClass [ a owl:Restriction;

owl:onProperty test:hasPart;

owl:hasValue test:endEffector ].

It belongs to the type C ≡ D, where D is a restriction described, in this case, as a

blank  node.  The  use  of  owl:hasValue  is  key  here:  this  sets  the  nature  of  the

restriction, while the property owl:onProperty is used in all restrictions.

It  is  also  important  to  consider  that  in  the  case  of  equivalent  classes

(owl:equivalentClass), the rule should work in both ways, which means, in this case,

two rules at once:

1. any individual whose successor for the property test:hasPart is test:endEffector,

belongs to class test:RoboticArm;

2. if  an  individual  belongs  to  the  class  test:RoboticArm,  it  must  have  the

successor test:endEffector for the property test:hasPart.

Both  of  these  can  act  as  rules  for  obtaining  new knowledge  and  as  rules  for

checking for inconsistencies.

In  the  case  of  using  rdfs:subClassOf  (which  corresponds  to  the  operation  of

inclusion), no ambiguity occurs, and one rule is given: the smaller (included) one is

covered by the description of the greater (including) one. The reverse is not true.

To describe universal restrictions, the element owl:allValuesFrom is used:

test:RoboticArm a owl:Class;
rdfs:subClassOf [ a owl:Restriction;

owl:onProperty test:hasPart;
owl:allValuesFrom test:RoboticComponent ].

Again we note that the restriction can act as the object and as the subject of a

terminological axiom, or in both roles at the same time in one triplet.
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To describe existential restrictions, the element owl:someValuesFrom is used:

[ a owl:Restriction;
owl:onProperty test:madeByWorker;
owl:someValuesFrom test:BestWorkers]

rdfs:subClassOf test:HighQualityProduction.

No special commentary is needed here, except for the fact that if an existential

restriction acts as the object of a terminological axiom when using rdfs:subClassOf,

this rule can only be used to check for inconsistencies.

OWL also lets us describe the  cardinality restrictions  discussed earlier. The only

difference is in the use of one of the elements: owl:сardinality, owl:minCardinality

or owl:maxCardinality to indicate the exact value of the number of R-successors of

any class:

[ a owl:Restriction;
owl:onProperty . . . ;
owl:minCardinality 2 ] rdfs:subClassOf . . .

In the case where it is necessary to describe a restriction like “a set of individuals

which  have  {n}  R-successors  belonging  to  the  specific  class  C”  (i.e.,  Qualified

restriction),  owl:onClass should  be  used  for  establishing  the  class,  as  well  as

owl:qualifiedCardinality,  owl:minQualifiedCardinality or

owl:maxQualifiedCardinality instead of those looked at in the previous paragraph,

respectively:

[ a owl:Restriction;
owl:onClass . . . ;
owl:onProperty . . . ;
owl: minQualifiedCardinality 5 ] rdfs:subClassOf . . .

With this,  the main approaches to formalizing knowledge can be considered to

have been discussed.
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PART 4. KNOWLEDGE-BASED SYSTEMS

Dynamic rules

However, the true intelligence of systems does not appear until they begin to not

simply use rules to deduce new facts (or check existing ones), but start to apply rules

to deduce or delete other rules. It is not simply about rules for working with facts, but

about rules for working with rules for working with facts.

The main approach which we will use is the activation/deactivation of rules. The

idea here is that the latter will be stored in a knowledge base but in a form which

allows  the  status  of  the  whole  rule  (active  or  not)  to  be  indicated  explicitly.

Consequently, we need a form of note in which the rule completely “reduces” into a

single node.

We have already come across this type of note, when we discussed the namespace

rdf and its class Statement, in whose example a whole triplet is stored at once. It is, as

it were, in the knowledge base, but at the same time, it differs from all the remaining

triplets in its note form.

Thus, we can take any rule looked at in the previous section (always presented as a

triplet!) and transform it into a special form, for example:

test:rule5 a test:Rule, rdf:Statement;
rdf:subject test:Car;
rdf:predicate owl:disjointWith;
rdf:object test:Book;
test:ruleStatus “deactivated”.

A restriction can be located in place of any one or two components of the rule.

Next, we need to work out the principles for activating the rules. The latter can be

activated or deactivated when an event occurs. The following can take the role of an

event:

- receiving a signal from a sensor/information system or receiving a command

from a special agent;
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- computing specific results of comparing certain values to each other;

- activating  one  or  several  rules  or  facts  (for  example,  the  activated

rdf:Statement examples obtained as a list).

The first case implies that the information system does not give out the number

itself (for example, the value of a specific sensor or the output of a neural network),

but the assessment obtained from analytical processing in the form of a string, for

example: “Sharp rise in pressure”.

Then the rule itself for activating the rule is put in the form

[ a test:RuleActivationReason;
test:keyText “Sharp rise in pressure”;
test:activatesRule test:rule5 ].

Now  to  activate  all  rules  according  to  the  rules  of  this  pattern,  we  need  to

implement a handler, which sends a request like “which rules are activated by a sharp

rise in pressure?”, and all of the rules found become “Activated”.

If the activator of a rule is some individual condition (for example, the activation

of a specific state (as in the example with the class test:State discussed earlier) or the

activation of a specific rule (the latter being in an “Activated” state)), a simple triplet

like the following can be used

. . . activatesRule . . . .

Its subject is the prerequisite for activation, and the object is the activated element.

In the case of a combination of conditions, instead of a blank node, we need to use,

for example,  a collection in which each element is represented by a rule or by a

current state, expressed by an activated example of the class rdf:Statement (as in the

previously looked at example with the class test:State):

(  . . .  . . .  . . .  )  a  test:RuleActivationReason.

It is implied that all  elements of the collection subject are activated – this is a

necessary prerequisite.

To implement other methods of studying, additional tools are needed, which are

looked at later on. First, however, it is necessary to note that studying a system is
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only one means of solving a particular class of problems, specifically: problems of

uncertainty. This concept will be looked at next.

Uncertainty

Intelligent systems are unique in that they are capable of solving problem with

considerable  uncertainty.  The  latter,  of  course  means  some  lack  of  data  or

knowledge for further actions.

However, it is necessary to clearly understand that, for example, if we do not know

in advance which temperature values will be given by a corresponding sensor, this in

itself is not considered to be uncertainty. If the system receives clear sensor readings,

and there is knowledge about which of the algorithms in the system should be used

for all  possible  temperature ranges,  then nothing at  all  interferes with the system

making decisions. Therefore, this situation has no relation to uncertainty.

If, however, in this example, we want the system to continue working properly

even in the situation where the sensors for some uncertain reason at one moment stop

providing  information,  we  are  dealing  with  the  uncertainty  of  the  situation,

characterized by insufficient information about the current state of affairs (there is no

information  from  the  information-measuring  system  or  this  information  is

unreadable); in other words, even if there is a suitable algorithm on board the system,

there is nevertheless still not enough input parameters (since they are unknown) to

launch it  and begin actions.  Another example is the situation with discovering an

unidentified object which the system nevertheless has to make a decision about.

At  the  same time  as  all  of  this,  however,  an  intelligent  system must  not  stop

working with an error or notification about a lack of data (although, a notification

should, of course, be sent). On the contrary, it must in this case take certain special

actions: either obtain this data some other way / from another sensor, or obtain other

(compensating) data, or make a decision without some of the data. However, this

decision  must  not  break  the  code  of  the  whole  process  or  lead  to  undesirable

consequences. Of course, if in all ambiguous situations the same decision is made (if

the system is programmed for this action), this points to a lack of any intelligence. An
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intelligent  system  should  analyze  its  own  experience  or  that  of  another,  extract

patterns from it, perform the safest test actions, analyze their results and errors, etc.

It  is  important  to  understand  that  an  intelligent  system  should  create  its  own

algorithm (at least part of it) during its work.

The next type is uncertainty in action algorithms. This has to do with the lack of

a ready solution for implementing the purpose of the system, even if all the necessary

input data is given. For example, if it is known that at any moment any command (in

a form understandable  for  the system) can be given by a  user  or  a  higher  agent

(programs or  devices),  any required data  about  the situation  is  available,  but  the

system may not have a pre-prepared method for executing the given command (the

risk of lacking a ready algorithm grows with an increasing level of the arbitrariness of

its content). Another example: a vehicle control system discovered some object on the

road. All of its characteristics are known; however, its parameters do not correspond

to the expectations of the system (for example, aggressive behavior). This includes

the situation with an unpredictable change in the very purpose of the system.

Here,  again,  the  system  has  no  right  to  respond  with  “error”  and  stop:  it  is

obligated to find a solution, taking specific actions for this which are suitable for this

specific situation.

The third case of uncertainty is uncertainty in the outcome. This means that even

if it is known which algorithm should be applied, the results of this application may

not be the ones the system is expecting. This can be about a change in the executive

or another equipment or a change of the plant.

At the same time, as it was said before, an intelligent system must be ready to

process any outcome that occurs from its actions and, in the case of a discrepancy

between the results and expectations, to adjust its methods and/or algorithms.

In  fact,  this  division  is  not  strict,  since  the  given  types  of  uncertainty are

interconnected, often one following the other.

Next, we will look at the basic system device, potentially capable of resolving the

specified uncertainties.

101



Components of a knowledge-based system

It is understood that in order to have intelligence, a software package cannot be

made up exclusively of a semantic knowledge base and a system for managing it.

This  is  due  to  the  lack  of  a  mathematical  apparatus  in  SWT,  which  noticeably

complicates  the  storing  and  processing  of  mathematical  dependencies  and  even

performing simple computing operations with incoming data. A knowledge base can,

for example, contain information about what needs to be done in the case of a drastic

change in the monitored parameters, but SWT cannot help track the very fact of this

change. Furthermore, we would be deprived of the most important source of new

rules and facts – the ability to analyze existing or new experience, archived and real-

time data about the operation of the system.

Thus,  an  intelligent  knowledge-based  system  (KBS)  must  include  not  only  a

system for managing knowledge bases, but other components as well (Fig. 10).

Fig. 10. Components of a knowledge-based system.

We will look at the components separately.

102



Information-measuring system

First, it should be mentioned that the source of all real-time data is an information

measuring system. This  term will  be understood as the totality of  all  sensors,  all

installed devices and agents from which information can be received. In other words,

any data about the external environment enters a knowledge-based system through an

information-measuring system.

The output point of this system we can consider to be the totality of files into

which the system writes real-time data. In this case, the remaining components can

refer to such files with read access to obtain data from them and then send it, for

example, to a database or a monitoring system.

Formulae management component

Its purpose is to store mathematical (including logical) dependencies, as well as to

call for their calculation.

The main difference of this component is, first, the storage of random analytical

dependencies,  where the latter  can be modified directly  during completion of  the

main system process, and, second, the ability to call for the required function by its

unique identifier (also stored in the knowledge base).

The  first  feature  is  explained  by  the  fact  that  an  intelligent  system offers  the

opportunity  to  learn  –  including  the  possibility  of  refining  mathematical  models

during the work. The second is connected to the possibility of using various formulas

to compute the same parameters depending on the situation. At the same time, since

we are talking about learning, it is not known in advance, in which of the situations

any formula will be applied.

To  practically  implement  the  specified  possibilities,  we  can  use,  for  example,

dynamic  programming  languages  (like  Python,  in  which  files  with  codes  are

interpreted   “on  the  fly”),  which  should  be  used  for  describing  mathematical

functions  for  calculations.  In  the  case  of  using  C#  language for  developing  this

module in the Visual Studio environment, we used IronPython, which allowed us to
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call functions in Python from the main code in C#, even if the former were modified

only after launching the main program.

This tool helps implement the second feature, since it allows us to call functions

even  with  a  predetermined  name but  from a  random file,  the  name of  which  is

indicated using a variable.

Accordingly,  in the knowledge base,  a  function identifier  is  described for  each

formula.  This  identifies  the  function  where  the  formula  is  implemented  and  the

conditions of its use (for example, to calculate what value the formula requires and

which input  parameters  are  needed for  this).  For  this,  the  properties  “identifier”,

“output  value”  and  “input  parameter”  can  be  used  for  individuals  of  the  class

Formula.

For  the  direct  application  of  an  arbitrary  formula,  the  formulae  management

component  should have a provided function whose input parameters will be all the

specified properties, and which will use, for example, again, IronPython to perform

calculations, and which will return the received number or its qualitative estimate,

e.g., “Exceeding permissible value”.

Since  this  component  must  provide  the  opportunity  for  prompt  changes  to

formulas, it is necessary to solve the issue of its technical implementation.

An important point here is the following: unlike the components of an experience

analyzer and neural network controller, this component is not designed to perform

procedures of identification, approximation, interpolation and so on. Instead of this,

this component requests already created formulas in various ways:

- asking an expert – via user interface;

- importing file projects;

- importing  from  third-party  CAD-programs  using  the  standard  Component

Object Model (COM) as shown in [Onufriev et al, 2019].

In the case of importing, special interface modules need to be developed, whose

task it is to store formulas in a form suitable for use by this component.
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Neural network management component

When solving problems, a person, acting as an intelligent agent, uses their ability

to  recognize  objects  around  them and  in  images,  the  shapes  of  lines  on  graphs,

patterns of element positions, etc. Since an intelligent system must also often solve

these problems, and more often than not neural networks are used for this, intelligent

systems should also include a neural network management component.

Remembering  that  neural  networks  are  capable  of  solving  a  number  of  tasks,

including  making  decisions  about  the  behavior  of  complex  systems,  it  is

recommended all the same in the framework of knowledge-based systems to delegate

to neural network, on the contrary, the simplest problems, such as:

- discovering the presence (or lack) of a specific object in a video stream;

- determining the fact of a quick (or slow) growth (or decrease) of a particular

signal;

- detecting a drop of signal values (or group of signals) to a certain range(s) of

values;

- determining the signal (or combination of signals) of a particular form: sharp

peak, parabola, maxima and minima, etc.

In all  of  the  specified cases,  we are  talking only  about  detection,  without  any

decisions  being made,  since  the more functions  that  are  required from a specific

neural network, and the more it solves at one time, the more complicated its structure

and training is, and the greater the possibility of error in its work and set up.

In connection to this, the  neural network management  must contain a set of the

simplest  neural  networks,  which  are  only  the  source  of  preprocessed  data  for

subsequent decision making by other components.

It is worth considering that some networks learn during their work (and in this

case, this component is responsible for the direct execution of learning algorithms),

while others are formed according to the type of knowledge-based neural network

(KBNN, KBANN).
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Monitoring system

A monitoring system is used to track various types of changes occurring with the

flow of real-time data. This system can simultaneously use neural networks, formulas

and other  means of  computing.  The result  should  be sent  to  the knowledge base

management system for subsequent processing.

However, neural networks, like formulas, by default return numerical values on the

output. If all of this data is immediately sent to KBMS, uncontrolled, we end up with

a number of requests which, in fact, may be repetitive and/or requiring no action. In

this case, the monitoring system should send requests to KBMS only in situations of

discovering  specific  signs.  Likewise,  it  should  determine  the  frequency  of  these

requests.

On  the  other  hand,  a  SPARQL-query  to  a  knowledge  base  that  includes  a

comparison with  a  numerical  value,  which is  bound in  the  knowledge base  to  a

specific indicator,  has a greater length and will take longer to perform than a query to

a state denoted by a string. At the same time, the structure of this query is relatively

simple and is described above.

The monitoring system should be in charge of not only processing the results of a

mathematical data analysis, but also for creating the processing tools themselves. At

the same time, the role of the latter can be filled not only by neural networks but also

by any algorithms for  processing information,  whereby these  algorithms must  be

programmatically derived from the information stored in the knowledge base. This

can  be  done,  for  example,  by  substituting  the  critical  values  requested  from the

knowledge base into the patterns of Python-function or  into files in which neural

network coefficients are stored.

The monitoring system uses neural networks and/or formulas for its tasks, from

which  comes  the  need  to  carry  out  interaction  between  the  corresponding

components.

Furthermore, the monitoring system supplies another component – an experience

analyzer  –  with  information  about  deviations  of  some  indicators  from the  norm,
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which,  in  fact,  prescribes  functionality  to  it  for  tracking  the  need  to  launch  an

adjustment to the existing models.

Databases and knowledge bases management systems

The next component is a  database management system. The latter are used to

store  the  current  indicators  of  a  controlled  process,  which  then  can  be  used  for

analysis. Here we are dealing with not only technical indicators of a lower level like

temperature,  pressure,  and  concentration  of  gases,  but  also  about  performance

indicators of a higher level, from the efficiency of a conventional “workshop” to the

strategic indicators  of  the whole company or industry.  DBMS should provide the

opportunity to promptly write new data in conditions where it is not understood in

advance how many data fields (columns) need to be stored. This number can be a

variable.

Knowledge bases are not used for archiving information. Instead, they contain:

- control goals and their indicators;

- information about the sequence of necessary actions in response to qualitative

assessments  of  situations  coming  from neural  networks  and  formulas  (like

“Sharp rise in pressure”);

- information  about  which  of  the  formulas/neural  networks  (identifier  of

function  processor)  is  needed  for  calculating  which  parameters,  and which

input parameters are needed for this;

- information obtained from experience,  for  example,  about  which actions in

what conditions most often led to the correct result;

- information about controlled processes, allocated time rates, subprocesses and

about their sequence, about their performance indicators and about the possible

executors of each of them;

- information about agents (and workers, equipment), which can be involved in

the processes, about their condition, about their interchangeability, about the

criteria for selecting an executor;
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- information about the most possible agent performance (for distributing the

load);

- the sequence of actions during interaction between agents as part of solving

general or related problems;

- rules for logically deducing or checking for inconsistencies.

Thus, a  knowledge base management system stores and generates information

about what and in what sequence needs to be done in order to meet the goals.

Presented  next  is  an  incomplete  list  of  the  material  obtained  from the  DBMS

output when interacting with it:

- list of control actions which need to be completed to improve the performance

indicators;

- list of assessments of the state of the system as a whole;

- list of suggested reasons/consequences of this situation;

- identifier of the formula/neural network for calculating a specific value;

- list  of  executors  which can be focused on solving problems as well  as  the

compliance of their resources with the requirements put forward, and so on.

Here  it  is  important  to  take  into  account  interaction  with  formulas  and neural

networks: a knowledge base management system should take from them generated

messages about the assessment of a situation, which means storing in it a list of such

messages in order to be able to sent  a SPARQL-query containing the appropriate

information.

Furthermore, in the case of tracking the deviation of performance indicators from

the established norm, a mathematical apparatus must be created automatically based

on the settings stored in the knowledge base. If program methods are used to compare

values,  they should make comparisons with the settings obtained from  DBMS. If

neural  networks  are  used,  they  do  not  require  studying.  This  is  a  question  of

calculating  “weights”  according to  easily  derived formulas  based on the  required

settings.
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Experience analyzer component

If a system collects  enough data about work,  we can speak about  the work of

another module:  the  experience analyzer component.  First  of all,  we are talking

about detecting some patterns in the accumulated data, about defining connections

(mathematical  models)  between  various  indicators.  To  solve  such  problems,  this

component  should involve a statistical apparatus. Likewise, one should study their

own neural networks, and other Data Mining technologies should be used.

When implementing this component, the following questions need to be answered:

- which  event  can  become  a  sufficient  basis  for  launching  an  experience

analysis?

- which data specifically from all available data needs to be analyzed first?

- what does it need to start being analyzed for?

In order to simultaneously solve the given questions, it  is  suggested to use the

monitoring  system mentioned  before,  which  is  intended  for  tracking  the  state  of

signals and, in this case, can interact with the experience analyzer and initiate the

process of searching for new knowledge based on the obtained data.

The first  indicator which this system should react to is the deviation of one or

several performance indicators from the previously given (or previously calculated)

value. In general, this  can mean (and therefore requires checking) that the general

model which we used to calculate the required control action for ensuring the desired

indicator  does  not  work  correctly.  Note  that  it  is  not  necessarily  an  incorrect

mathematical dependency. After all, we can also talk about establishing an incorrect

cause-and-effect relation between the performed actions and the expected results. A

more general case of launching the analyzer is obtaining an unexpected result at the

output (even when it is positive).

The  experimental  results  between  the  desired  results  (indicators)  and  input

interactions should be analyzed on the considered basis for starting the process of

calculating models.
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The  second  general  basis  for  starting  calculations  is  the  fact  of  discovering  a

certain  repetition.  In  many  ways,  this  corresponds  to  the  logic  of  reinforcement

learning  (which  is  inherently  training),  where  after  several  repetitions,  the  same

actions lead to the same result, which lets us create the rule “if A is done, the result

can be B”. To carry out this type of analysis, the database should contain, among

other things, information about actions and about their outcomes.

Thus, the monitoring system should regularly refer to the database and, constantly

processing the flow of real-time data written in it, track the state of key indicators and

periodically monitor the repeatability of cause-and-effect relations.

When discovering deviations or repeatability, the experience analyzer component

should  be  activated,  already  directly  performing  calculations.  In  the  case  of  a

deviation of the indicators, it should implement identification algorithms (including

neural  networks),  and  in  the  case  of  the  repeatability  mentioned –  algorithms of

statistical analysis.

It is worth noting that neural networks are used within knowledge based systems in

two modes:

1) the  neural  network  constantly  checks  the  incoming  flow  of  real-time  or

archived data;

2) the neural network performs an approximation of data for calculating a new

model when one of the previously indicated events occurs.

In the first case, the neural network must be prepared for discovering the required/

undesired elements or patterns before being used. It is also possible to “re-train” it

during the work. This mode can be used for monitoring the situation at a management

facility to monitor the current state.

In the second case, the models are obtained by launching a process of training the

network on the available data. It is important that both starting training and achieving

its results should be controlled by the system itself with minimal human involvement.

Thus, here the problem of prompt, unsupervised training arises.
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We  will  add  separately  that  the  basis  for  starting  the  process  of  analyzing

experience can also be served by the signal of the experiment component (looked at

below), conducting the experiment and generating new experience for analysis.

User interface

This component is necessary for interacting with the user of a system. At the same

time, it should be noted that a knowledge-based system may not have a user at all,

since it can be designed from the beginning as completely autonomous.

The user interface serves for obtaining data from the user or for visualizing the

current situation for the operator/person responsible.

For the input from the user, this component can take:

-commands to perform;

-knowledge;

-assertions in natural language (for example, in dialog systems);

-files (including graphs) for processing.

For the output for a user, the interface can give:

-warnings, notifications;

-recommendations;

-numerical statistics;

-graphs and diagrams visualizing the process;

-knowledge in a structured form.

In the case of working with technological processes, this component can act as the

so-called human-machine interface (HMI).

Automated dispatch control system

If KBS fulfill not only the role of a support system for decision making, but also

participate  in  managing  some  processes,  for  this,  it  needs  to  have  a  component

directly interacting with the management facilities. In fact, the automated dispatch

control  system  (ADCS)  is  required  for  converting  mathematical  and  algorithmic

models into physical managing signals or commands.

111



Managing actions can be sent

- to  programmable  logic  controllers  for  adjusting  processes  which  they  are

involved in;

- to executing agents, whose role can be filled by people (workers, users, etc.)

and by programs (simulators, game agents, etc.) and devices (motors, heaters,

etc.);

- to  other  management  systems  (for  example,  of  a  lower  level)  or  other

knowledge-based systems.

The automated dispatch control system in general includes a management facility

(or facilities), a set of devices for sending managing actions (devices for interface

with object),  computers  (realized on the basis  of  programmable  logic  controllers,

microcontroller/microprocessor systems, and other devices), a set of tools for reading

the signals from the object.

Experiment component

If in a situation of uncertainty in the system there is nowhere to get data/knowledge

from for further action, the only thing left is to take some experimental steps. Here

we are talking about creating new experience (unlike the actions of the experience

analyzer  component,  which works  with  data  already existing  at  that  moment),  in

other words, a trial operation with an analysis of the results obtained.

The main difficulty lies mainly in the probable danger of an experimental action,

which is linked with the danger of an unidentified object, with the risk of damaging

equipment due to improper action, and with a possible lack of access to the object

(closed nature of the object).

Furthermore, experiments should be conducted according to a certain consistency,

with certain rules for planning and conducting experiments, since the goal is to get

systematic and not random results .

In connection with this, the purpose of this component is to determine the goals

and conditions of the experiment, to plan it immediately, to obtain experimental data
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(which  is  then  checked)  to  send  on  to  be  processed.  The  rules  of  conducting

experiments on which this component works can be stored in knowledge bases.

It  is  worth  separately  noting  that  the  problems of  planning and conducting  an

experiment are directly related to problems of generating a hypothesis and testing a

hypothesis.  Each  of  these  problems  is  rather  complex  and  requires  individual

consideration. However, in the framework of this textbook, as a way to implement

one of the approaches to solving the first of these problems, we will only mention the

JSM-method  [Gavrilova,  Kudryavtsev,  Muromtsev,  2016]  and  methods  of

Association rule learning. The Tableau algorithm will be looked at as an approach to

solving the second problem [Zolin, 2018].

The tableau algorithm is used to prove or refute statements presented in one of the

logical  languages.  Modifications  of  it  exist  for  the  languages  examined  here:

propositional logic, first-order logic and description logic.

The approach is simple: in order to prove a statement, it is necessary to show the

inconsistency of the refuting statement. In other words, if it is necessary using this

approach to show [ (а → b) ∧ b ] → а, then we need to show that ¬ { [ (а → b) ∧ b ]

→  а }  is  a  contradiction,  an  unfounded  statement.  Meanwhile,  to  prove  (from

description  logic)  that  ∃R.A ⊔ ¬∀R.(¬B ⊔ A)  ⊑ ∃R.B,  we  need  to  prove  the

inconsistency of the statement ¬ { ∃R.A ⊔ ¬∀R.(¬B ⊔ A) ⊑ ∃R.B }.

The next steps are fundamentally the same in all three logical languages: logical

statements are transformed to branches (which are called “tableaux”) and create an

expanding  branching  structure.  Next,  rules  (related  to  revealing  conjunctions,

disjunctions, restrictions, etc.) are applied to each of the branches. According to these

rules, these branches either extend, close or remain unchanged. If at the moment the

next steps of the algorithm for transforming the branches are not possible, then either

all branches are closed (“blocked”), or some remain unclosed. In the first case, the

statement put forward, negating the initial statement, is considered contradictory, and

the initial one is proved. In the second case, the initial statement is considered to not

be universal and therefore is refuted.
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Of course, solving the problem of generating and testing a hypothesis is not limited

to the JSM method and tableau algorithm. However, familiarity with them helps to at

least sketch out approaches to solving the indicated problems.

Search component

An intelligent  system should act  in a situation of  uncertainty,  for  which it  can

either analyze previous experience in order to derive new knowledge, or create new

experience (but conducting experiments), or search for missing knowledge in external

sources.

To solve the last of the indicated problems, a search component is assigned, whose

functionality includes:

- obtaining information about which (about what?) data/knowledge is required;

- forming  a  query  and  sending  it  either  to  structured  knowledge  sources

(DBPedia,  Wikidata  and  others),  or  to  unstructured  ones  (searching  in

literature, in a Global Network and so on);

- analyzing the search results, structuring and formalizing them into knowledge

form.

Core

This is an integral, connecting element of a system.

Its main task is to organize an information link between the core and all the other

components: in fact, the delivery of messages between them. Thus, the core is a set of

tools  for  reading  data/commands  from  their  sources  and  sending  them  to  their

destinations.

Here it is important to understand that the core itself does not make decisions about

the methods and tools for processing incoming data. An appropriate component for

the task is responsible for each of the decisions. This must be taken into account

when developing each of them.

Furthermore, understanding the very processes of information exchange between

the components must precede the software implementation of the “insides” of the
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latter, as only it gives understanding about the work of the system as a single whole.

For this, in turn, it is necessary to select the form of implementation of the core.

In the first case, the core is implemented as a comprehensive, independent unit, a

set  of  functions  which  is  independent  from  components.  Then  the  components

themselves only prepare data for  sending,  while the core,  in a specific  sequence,

cyclically  asks  all  components.  At  each  iteration,  one  or  several  transactions  are

performed (similar to how it is done in the cycle of a programmable logic controller).

Of course,  here parallel  computations can be carried out  as well,  if  the hardware

provides such an opportunity.

In the second case, the core is dispersed, i.e., its functions are distributed among

the components. Then each of these must, in addition to its own functions, carry out

an information exchange with other components. In this form of implementation, the

core does not exist as an individual component.

Multi-agent organization of a knowledge-based system

Everything said above about KBS does not mean that it is a complex, completely

located  on  a  single  computing  device.  Furthermore,  if  a  management  system  is

presented as a whole business, when we are talking about a large number of signals,

devices, indicators, uncertainty, influencing factors, interactions, etc., then with such

centralization,  the  performance  of  the  whole  system  will  largely  depend  on  the

characteristics of the central computing device and the quality of the channels joined

to it, since all decisions are made centrally, which is not preferred.

This is one of the reasons for the transition to distributed systems within the trend

of intellectualization, where instead of a single decision making agent device, there

are several.  Multiagency  will be considered as the structure of a knowledge-based

system, represented by a set of software agents on several physical devices.

An example of such a system can be the factory management system described in

the work [Kovalevskiy, Onufriev, 2019], where the general functionality of a business

is provided by a set of agents (carried out on the platforms of Raspberry Pi, each of

which monitors its site of the enterprise), joined into one network. At the same time,
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each of  them is  a  knowledge-based  system,  although any of  them will  be  much

simpler in functionality and design than the result of their combination, which is a

multi-agent knowledge-based system.

However, potentially lifting the specified restriction, such a transition also raises

questions about what form each KBS component will be appear in if there is now

more than one intelligent device, and if they all implement components similar in

functionality.

Possible  forms:  network  component,  local  component  and  distributed

component.

A network component  is  the  first  form of  implementing a  component.  Such a

component is not stored in most agents. It is accessed over the network. At the same

time, exchanging with it is not significantly different from the case of it being “on

board”. An example of such a component is a knowledge base which is physically

located on a single device, and which the rest of the agents refer to when needed.

The second form is a local component, the essence of which can be explained by

the phrase “to each his own”. This means that such a component can exist on each

device, but is focused on solving, for the most part, the tasks of only this device.

Accordingly, it has the content required for this device to work. An example is a

database which can appear with every agent,  but stores the information necessary

only for it. Thus, these local databases may not overlap for different agents. However,

local components may be available for the rest of the agents.

The third and most complex form is the form of distributed components, meaning

that  part  of  the  last  one,  even  if  physically  dispersed  across  different  devices,

nevertheless make up a single, comprehensive system. This means that it is necessary

to organize interaction between the parts of a single system. So, if this is a distributed

database, then its parts (which can overlap each other) should be synchronized.

The need to solve the problem of component forms is related, on the one hand, to

the fact that not one agent should control the whole system entirely (the latter in this

case would be centralized, making multiagency unnecessary), while, consequently, its
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own information  may  not  be  enough  to  complete  certain  tasks.  This  means  that

certain components should, at least, be available to other agents. On the other hand,

if multiple agents simultaneously refer to the same source for information, this can

lead to a high dependency of their work on the quality of the connection and the

bandwidth of the channels. However, if instead of this, the components will be local

or distributed (especially if  the information in them is duplicate),  this generates a

number of problems relating to dispatching and synching data.

We will examine the components individually.

A database should not function like a network,  since in this case its  tasks will

include collecting all real-time data from each device. At the same time, data about

the work of one of the agents may be necessary for the work of another. Therefore, an

acceptable  form is  a  local  DB with the possibility  of  other  agents  accessing it  if

necessary.

A monitoring system should be implemented in a local form and work with a local

database.

The same can be said about an information measuring system.

Meanwhile,  a  knowledge  base,  depending  on  the  potential  frequency  of  its

demand, may well be used in network form. For this component, any of these forms

is possible. However, the more “local” the knowledge bases, the more complicated it

will be for the agents to “understand” in which of the available knowledge bases they

need to search for the values required for each specific case.

The components of management for neural networks and formulas are better to

function locally, solving the problems of the device on which they are located.

An experience analyzer may not be a constantly active component, and therefore,

along with a local form, a network form is perfectly acceptable. The same can be said

about components of search and experiments.

The user interface can also be a network (for example, on a user terminal or in the

form of a web application), as well as local – if the latter is required.
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If an automatic control system is used, then it is unlikely that all devices should

have access to it.

In any case, the problem about the form of implementing any component must be

solved for each specific projected knowledge-based system.

It  is  important  to  keep  in  mind  that  no  ready-made  “recipes  for  producing”

knowledge-based systems exist. This is still largely a scientific challenge requiring an

individual and creative approach.

However, only systems solving significant uncertainties (and only them) can claim

to be intelligent.
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