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Abstract

A simple derivation of the Euler formula for the angular velocity of a rigid body is

formulated.

A matrix method for solving problems of kinematics of resultant motion of a particle

and plane motion of a rigid body is proposed.

Sets of interactive excel problems on the kinematics of a particle, resultant motion of
a particle and plane motion of a body are presented. They allow the student to independently
correct errors noted by the program at each step of the solution, and freeing the teacher from

the work of checking the task.
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Kinematics of particle

Kinematics- part of Mechanics that explores the ways of description of the motion of
a particle and rigid body. The motion is studied over time and relative to some reference
frame - "hard" 3D-space in which the observer is able to measure the distances and time.
The reference frame may have multiple coordinate systems, but they will all belong to the
same reference system.

Time ¢ is a scalar, monotonically increasing value from t = 0 known as initial moment. In
classical mechanics, time is considered to be the same in all frames of reference.

Methods of description of particle motion.

To describe the particle motion means to determine the position of the particle in
space at any given moment of time. Let us consider three ways of description of the particle
motion: vector, coordinate and natural.

Vector method.

This is the main method, since most of the motion characteristics are vector
quantities. The particle position in the reference frame at a given moment of time 7 is given
by the radius vector of the particle (Fig. 1).

7 M Vector-function r(t) of scalar argument ¢ is a vector
r(t) law of motion. Direction and module of radius-vector
ol change over time and the particle M moves along the
2(t) Y curve called a trajectory of the particle.
> P -
XAA X(t) Hodograph of the vector function is a curve

t .
vt Fig.1 described by the vector end while the scalar argument

changes, and the beginning of the vector is fixed. It is
clear that the hodograph of the radius-vector of the particle is its trajectory.

Coordinate method

If we link a system of coordinates, for example, the Cartesian to the reference frame
then the radius-vector can be described by its projections



x(t), y(0), z(t) (D

the law of M motion in Cartesian coordinates. Motion equations (1) describe the particle
trajectory (with time ¢ parameter). If we eliminate the parameter 7, we will get the equation
of the trajectory:

filx,y,2) = 0; f(x%,y,2) =0
The trajectory is the portion of this curve, which corresponds to the t > 0
In cylindrical coordinates (Fig. 1) the law of motion is
p®), @), z() (2)
In spherical coordinates (Fig. 1)
r(@), @), 6(t) 3) R
Natural method / Fig.2

It is useful when the trajectory of the particle is known beforehand (Fig. 2). Rails, for
example, specify the path of the tram, so here we use the natural method.

To describe the position of the particle on the trajectory at a given moment of time we would
need indicate on the trajectory a start point M,,, the

G s
S positive direction (+), and the function of the curvilinear
),/ coordinate o(t) — the arc M,M length with the
O ¢ appropriate sign.

It is convenient to choose the position of the particle at
the initial moment t = 0, as a start point M, and
direction of its motion as a positive-direction.

Fig.3

Function o(t) iscalled natural law of motion. We should not confuse it with the path
s(t) that is a monotonically increasing function. Meanwhile coordinate o(t) can change its
sign and go to zero. As for the tram, returning to the depot, coordinate o (t)becomes zero,
while the path s(t) reaches its maximum value (Fig. 3).

Derivative of vector functions by scalar argument

4

" Consider a vector function a(u) of scalar argument u. With the
change of the scalar u the end of the vector a describes a
hodograph (Fig 4). An increment Au of parameter u causes
increment Aa of vector-function. Let the argument decrease

(Au<0). Then vector Aa/Au is directed opposite to the
increment of Aa. We call derivative of vector functions by
scalar argument vector

Puc.4 da Aa

— = lim — 4
du Mu-0Au S

While the increment Au is tending to zero the secant Aa is tending to tangent position.

Thus, the vector derivative is always tangential to hodograph of vector-function.



Consider the basic properties of the vector derivative.

The derivative of vector-constant function is zero:
da

=C t —=0 5
a onst - Y (5)

The derivative of vector function, constant by its module, is not zero since the vector
still changes its direction. As to the derivative direction, since the hodograph of the function
rests on the sphere of radius a, so the derivative is tangent to the vector itself.

. da 6
o ﬁ —
a = Cons 7 1l a (6)

Such vectors are, for example, the vectors, connecting any two particles of a rigid body.

Next, go the properties deduced from linearity of differentiation operator

d da db
E((l-l—b)—aﬁ'a

d 1 ;tda
4 4 b du( @) du
— 4a, L4
w0 (a-b) = o b+a T (the order of factors can be changed!)

% (axb) = Z—Z X b+ a X % (the order of factors cannot be changed!)

We will prove the most practically important property:
Projection of a derivative is equal to the derivative of the corresponding projection
da da,
(@), 2
u/y du
We will present the vector by its projections on the axis x, y, z with unit-vectors i, j, k

a=a,+ a,j+ ak
Take the time derivative, given that unit-vectors are constant:
da da, 6 da,  da,
— = i+ j + k
du du ' du’

u du
On the other hand, you can submit derivative also via its projection

da (da) - (da) 4 (da) "

du duxl du y] du/,
Comparing the two expansions, we conclude that property 7 is right. In Mechanics, for the
sake of brevity the time derivative we mark by a dot over the letter:

da
dt —

Velocity and acceleration of particle with vector and coordinate methods

Vector method
M Velocity

T Particle velocity and acceleration are vector quantities, so

r(t) )
let's define them in vector method.

Puc.5 We call the velocity of the particle vector



v i (8)

i
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From the definition, it follows that the velocity is tangential to the hodograph of radius-
vector r, i.e. to the trajectory of a particle. Velocity is directed toward the sense of motion of
the particle on its trajectory.

Acceleration
We call acceleration of the particle vector
av  d*r
= E = W =r (15)

Note that if the velocity of the particle is constant by module (uniform motion), the
acceleration is normal to the velocity as the vector derivative. This will be confirmed in the
natural method.

Coordinate method

Velocity
Deriving
rt) =x@®i+yt)j+zt) k
by time we get
V=xi+yj+zk (9)
Thus, from the law of motion x (t), y (t) z (t) we can find the vector V'

i

< S

v 4
Cos(x,V) = 7; Cos(y,V) = 7; Cos(z,V) =

Acceleration

Given the law of motion, we use the derivative properties to find the projections of
acceleration vector

We=V,=% W, =3, W,=% (16)

module and direction of the acceleration vector:

W=\/Wx2+Wy2+WZZ;

W, |4
i Cos(y,W) =25 Cos(z,W) =7 (17)

3%

Cos(x,W) =

Velocity and acceleration of particle with natural method.
Frenet Formulas
Given the law of particle motion on its trajectory
o(t)
It is obvious that the radius-vector of the particle is a function of the coordinate o: r (o).
Frenet formulas define the natural basis of the three orthogonal unit vectors z,n, b, via
derivatives:



The Ist Frenet formula specifies the ort of the tangent

_dr n
T_do_ ( )

Direction.
It is tangent to the trajectory, as a derivative of the radius-vector.
Directed in positive direction of o, regardless of the particle motion direction (sign of do).
Even if dr is directed to the start particle Mo, do is negative and the derivative is directed
toward positive sense of o
The module of the derivative is equal to 1 as the limit of the relationship of the chord to the

arc Ar /Ao
The 2nd Frenet formula specifies the ort of the main normal n
kn =27 (11)
n=—
do
Direction:
dr . . . .
d—; is normal to T as a derivative of a vector with permanent module. It specifies the
direction of motion of the end of T when the particle M moves.
% is directed toward the concavity of the trajectory. Even if the particle moves to the start
. o : .. dr .
point Mo (do < 0 ) and dr is directed toward the bulge of trajectory, the derivative d—; still

is directed toward a concavity in view of negativity of do.
.. dt . :
Module k of the derivative d—; is called the curvature of the trajectory at the particle M.

Reciprocal value
1
=%k

is called the radius of curvature of the trajectory at the point M.
Ort b of binormal is directed so that 77 n, b would be right
b=txn (12)

We call the plane (7, n) the tangent plane to the path at M. The tangent plane can be
obtained as a limit position of the plane of the circle through three points of Mo M and M;
on the trajectory when Mo and M tend to M. The limit value of the radius of such circle
strives toward the radius of curvature p.

Velocity
Deriving
dr drdo
V=E=%E=O-T (13)
Thus
V="Vr V=0 (14)

As we see, the velocity is tangent to the trajectory, and its projection onto the tangent is
equal to the first derivative of law of motion

Acceleration

Deriving



W dTdo o 18
—dt—at 0T =0T odgdt—a‘t pn (18)

Thus, the acceleration of the particle has two components (Fig.6)
tangent and normal

o2

W=W,+W, W,=6t W,="n (19)

W = /m2+wn2

Uniform motion is called the case of constant velocity
module:

V = Const (0 = Const).
W / W=0 " Under uniform motion (Fig. 7) the tangent acceleration is zero.
v W, Thus, the tangent acceleration W, characterizes the change of

velocity module.

Fig.7
Full acceleration is normal to the velocity. It disappears in the
inflection points of the trajectory and is zero when the particle in on a straight line.
Therefore, normal acceleration W, characterizes the change of direction of the velocity
vector.

As is known, the acceleration is created by a force. This can be the active force or
the force of reaction. When tramway is turning its normal acceleration created by the rails’

— reaction depends on the radius of curvature of the trajectory.
\ If we dock the straight stretch of rails with the rails of radius R, the
- 3// normal acceleration of tram (and of passengers) instantly changes

) from zero to full scale value (the upper curve in Fig §). The same
- i way changes the reaction of the rails. The final and instant change
| of force is called a hit.

Fig.8 The passengers also feel this shock. To avoid the shock, the
curvature radius of the rail on the turn decreases smoothly (the lower
curve in Fig.8).

Uniform accelarate motion is a motion with constant tangent acceleration:
0 = Const =W,
Integrating, we get:
o=Wt+C( (20)
where C; is the constant of integration, which should be found from the initial conditions:

t=0: 0 = 0y O-:VO (21)
Find: C; =V, Repeated integration gives the law of the motion of the particle along the
curve:

2
o =W, = + Vot + 0 (22)



Example of solving a problem on the kinematics of particle
The particle moves in the xy plane according to the law

x = 4Sin (%), y = 3Cos (?)
Find the velocity and acceleration of the particle, the radius of curvature of the
trajectory at the moment t; = 1c
Solution
Initial position at t=0 x(0) =0M, y(0) =3m
Att; = 2,8¢c x(2,8) =1,24m, y(2,8) = 2,74m

LY
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v, |4 .
M, '
3.0 % Wi M|
‘ ~ ”
.5 v w} ‘@
l/
/
14

2.0
n
1.5 ,,
1.0 W W~ v >
0.5
X
0 >
-0.5
-1.0
-1.5
-2.0
-15
-3.0
-3.5
4.0
-40 -35 -320 -25 -20 15 1.0 05 o 0.5 10 1.5 2.0 15 30 3.5 4.0
W () — 4sm(3§) y(t) = Scos(zTﬂ)
Velocity
. 3t . - /2mt
V., = x = 3nCos (—) = 8,96M/c; V, =y = —-2nSin (—) = 2,56M/c
4 Ji=28 3 Jt=28
V= [V +V?=93m/c (24)
Acceleration
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472 2mt
W, =3 =——~Cos <_)t1 = —12,02m/c?

13,8
W= /sz+wy2 =—  (26)
W =B ggu = [we -z =22

VZ
p=—=9M (28)

Excel assignments on particle kinematics can be downloaded from the link
https://disk.yandex.ru/d/KCqL.8Qh3170FHQ

Kinematics of rigid body

in development of Mikhail Valentinovich Mironov ideas

Euler's Formula.
Angular velocity of body

We will name body vector any vector a, connecting two points of the body. All
body vectors are constant in module and change only their directions, turning with the body.
It is clear that the column of projections of vector a on the axis of stationary system of

coordinates
X
a= <y> (1)
z

can be associated with the column of projections of its derivative

X
a= (Y) (2)
Z

by 3 x 3 matrix Q in the countless ways
W11 Wiz W13
a=20a Q= <w21 W22 w23> 3)
W3; W3z W33
We are interested in whether there exist among these matrixes one matrix 2 common
to all body vectors, in other words, describing the movement of the entire body. As is
known, the time derivative of a vector with permanent modulo is perpendicular to the vector.

It means for an arbitrary body vector a:
a-a=a’a=a"Qa=0 (4)

W11 W1 Wi3 X
(X Y 2)|wz1 Wy W23 <y>=
W31 W3y W33 z

= x%w11 + Y?way + 2% w33 + xy (W1 + wz1) + yz(wy3 + w3y) + zx (W31 + wq3)
=0 (5

So

Matrix () will be independent of body vector, if all coefficients standing by the projections
of the vector are equal to zero.
W11 = Wy = w33 =0 (6)
W31 = —Wq1 = Wy W3y = —W323 = Wy W13 = —W31 = Wy


https://disk.yandex.ru/d/KCqL8Qh3170FHQ
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Denote the three non-zero elements of the matrix as in the attached matrix of the
vector in the right oriented space.

0 —wW; Wy
QA=| w, 0 —w, (7)
—wy Wy 0

The elements of the matrix () have a simple geometrical meaning. They present the
projections of the velocity of the end of the first index ort in its rotation around the second
index ort on the third axis in right oriented space.

So
W1z = —Wy (8)

It means that the end of ort i moves against the z axis when it rotates around the y
axis. It is clear why the elements with duplicate indices are zero.

Thus, common for the all the body-vectors common matrix () exists and it is skew-
symmetric. Let's call it the matrix of angular velocity of the body. With its three elements,
we can build of the column of projections of body’s angular velocity vector.

Wy
o= (wy> 9
2

Thus, we come to the Euler formula in a matrix form

a=Qa (10)
which corresponds to the vector Euler's formula
a=wxa (11)

Formula (11) shows that the time derivatives of all vectors in the body are expressed through
a single and common angular velocity vector.

Theorem on distribution of velocities in a rigid body

Pole method.
Euler's formula gives the opportunity to express the characteristics of movement for
B all points of the body by the same characteristics of one, specially
chosen point of the body, called a pole. This method is called method
of pole.

Consider an arbitrary point B in the body. The main in method of
pole is the expression of the radius-vector of an arbitrary point of the
body by the radius-vector of the pole A:

Puc.1

rg = r,+ AB (12)
Differentiating (12) in time, we find
dt ~ dt = dt’ B AT de (13)

To the body vector AB the Euler's formula must be applied

dAB

7 =w X AB (14)
So, we come to the theorem of velocities in a solid

Vg = V,+ w X AB (15)

Matrix form of this theorem in an arbitrary coordinate system has the
form of:
Vg =V, + Q(AB) (16)
Consequences of the theorem
If velocities of two points A and B are equal the vector of angular
velocity is parallel to AB. For example, in rotation of the body around
a fixed axis the velocities
of the points on this axis are equal to zero. Therefore, the
angular velocity vector is parallel to the axis of rotation Z.
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Usually, we place it on the axis (Fig. 2) and always direct it according to the rule of
the right screw.
Inverse is also correct. The velocities of the points on the line, parallel to the angular
velocity, are equal at this moment

ifAB lw - Vg =1V, 4)
Theorem of projections. Projections of velocities of two points on the axis that passes
through these points are equal. To prove the theorem design z axis that passes through both
z points. In view of the reciprocal perpendicularity AB and

a cross product w x AB we get:
VB PrapVa = prap Vp (5)
A This theorem is a natural requirement of that the distance
Puc.3 between points of a rigid body should rest constant.
Example:
Find the velocities ratio for the points A and B of the Va
rod of the crank mechanism. Point A belongs to
crank OA, rotating around the axis and it moves on q\
a circle, so its velocity is perpendicular to OA. Point \Q A
B velocity is directed along line OB. With the
theorem of velocity projections, we have 0 B
V,Cosa = VzCosp (6) = «——1°

VB
p
Pruc.4

Translational motion of a rigid body

Instant translation is the movement when the body angular velocity instantly turns
to zero
w=0 (1)

In this case,
Vg =V,+ owxXAB =V, =V (2)

That means that at this moment the velocity of all points are equal. For example (Fig.1), at
the moment when the crank OA L AB, w =0, velocity of
points A and B are equal.

If the angular velocity is equal to zero for some
period of time, the movement is called translation. For

example, the slide B (Fig. 1) moves at translation.
dAB

A

VB= VA

S WwXAB=0
ac @

means that Fig.1
AB = Const (3)
Thus, in translation any body-vector remains parallel to itself. The
trajectory of any two points A and B are the same and are shifted to
the constant vector AB (Figure 2).
Figure 3 shows a Ferris wheel,

which cabin makes circular translation

Fig.2 motion. All points of the cabin, including
the points A and B are moving along the similar circles with AB
centers offset.
In general, all points of the body have different velocities, so the
terms "velocity" and "acceleration" refer only to the point of the
body, and the terms "angular velocity” and “angular acceleration"
refer only to the body. Only at transition V can be called the velocity of the body (but better
not to do so).

e
(0]

Fig.3
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Differentiating (2), we find that at any given time accelerations are equal for all the

points
W, =W,=W (4)

The transition of the body is described by formulas of particle kinematics, since all
points move the same way. As it is known, the movement of a particle in space is defined
by three scalar functions of coordinates. Thus, in transition the body has 3 degrees of
freedom.

Rotational motion
Angular velocity and angular acceleration of body.

Let the body rotate around a fixed z axis. It is convenient to describe the body
position by angle of rotation (fig. 4)

¢ =) ()

This is the law of body rotation. Thus, in rotational motion body has
one degree of freedom.

As has been shown, the angular velocity o of rotating body is
directed along the axis of rotation. So w, = w, = 0 and matrix of

angular velocity is:
0 —-w, O
0= (a)z 0 0>
0 0 O

Let us find the projection m, of the angular velocity on axis z.
The column of radius vector r projections

hCos ¢
ro= (hSimp) h =rSina a =rCosa (6)
a
is connected with its derivative
—=Sin @
T = h<p< Cosq )
0
By Euler formula
=Sin ¢
1'"=Qr=hwz< Cosg ) (7)
0
We get
Wy = @ 8)

Thus, the angular velocity is the velocity of change of the rotation angle ¢ . Hence
the name of angular velocity. Body angular velocity vector is directed so that the right
screw, rotating with the body, moves toward the axis z of rotation.

Angular acceleration of the body is the vector
dw
=— 9
€= %)

Since hodograph of vector w lays on the axis of rotation, the angular acceleration vector is
directed along the axis of rotation. Differentiating (8) in time, we find:

&= Pk = ¢,k;
Thus, projection of angular acceleration on z axis is equal to the second derivative of the law
of rotation.
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& =¢ (10)
Accelerated is rotation with increasing angular velocity modulus. It is
® obvious that it will be the case if vectors of angular velocity and
acceleration (left Fig. 5) have the same direction. Thus, the rotation will be
accelerated if ¢ > 0 0 and decreasing when p¢p < 0

Puc.5

Velocity and acceleration of a point of rotating body
According to the consequences from the theorem on velocity distribution the
velocities of the points on the straight line parallel to the axis of rotation are equal. So, let's
look at how the velocity is distributed on the cross-section line perpendicular to the axis of
rotation.
Since the radius-vector of the point M is a body-vector, the velocity of the point
comes from Euler's formula

V=r=wxXr 11
Matrix form of this formula in any coordinate systems
V=Qr (12)
In accordance with Fig.4 velocity module V equals
V=wrSina=wh (13) Va
We see that the velocity module linearly
depends on the distance h from the axis of rotation. A
Picture of the distribution of velocity on the line,
perpendicular to the axis is presented in Fig. 6. 7
Let us find the acceleration of a point of ®
. 42 rotating body. Differentiating (11) in time,
B |A| we find Puc.6
W W=V=%(w><r)=
M =wXTr+wXr=exXxr +oxV (14)
Thus, the acceleration of a point of rotating body has two
wee al r components (Fig. 7).
W =W + Ww°e (15)
Componenet
W Fig.7 WP=exr (16)

1s the tangents acceleration, but here it is called the rotational

acceleration of the point. Special name introduced because not at all body movements
€ X 1 is atangent to the trajectory of the point (see spherical movement). Rotational
acceleration points toward the angular acceleration € arrow. Modulo

W?®P = gr Sina = ¢h

Second component

W=w xV (17)
is directed to the axis of rotation, regardless of the direction of rotation (vector ) and is
therefore called the centripetal acceleration of the point. Vectors w and V change the
direction together, so their vector product does not change its direction with changing of
direction of body rotation. Modulo

W = wV = w?h
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The acceleration modulo W and the angle {3 that it makes with the direction to the axis:
Bp
W = VWep? 4 woe = p/e2 + w4 tgﬁzgl//()c:%
We see that the acceleration modulo linearly depends on the
distance h of the point from the rotation axis, and that angle S is the
same for all points of the body.
Now it is easy to draw a picture of distribution of accelerations
in a rotating body. Since on the line parallel to the axis of rotation
Fig.8 velocities are the same, then the same are accelerations. So, in all
planes perpendicular to the axis of rotation, distributions of velocities
and accelerations are the same. One of them is shown in Fig. 8.
Let us calculate the projections of a point M acceleration (Fig.7) on the axis rotating
with the body by matrix method. Differentiating (12) by the time we get:

W=V=0r+Qr=¢E+0ar=(E+0%r (18)
Here € is a skew-symmetric matrix of angular acceleration
0 -1 0
E=N=¢ <1 0 0) (19)
0 0 O

Plane motion of body

Motion law of a plane figure
The movement of the body is called plane, if the velocities of all its points remain
parallel to some fixed plane. An example of such a movement is a cylinder rolling on the
plane (Fig. 9). Velocity vectors of all points of the cylinder are parallel to the plane IT.
Multiplying velocity distribution formula
Vg = V,+ wxXAB
scalarly by the ort n of the normal to the plane I1, we get:

0 =n-(wxAB) = (n X w)-AB (20)
Since AB — is an arbitrary body vector
nxw=0

Thus, in the plane motion angular velocity vector w
stay parallel to n.

We know that the velocities on the line parallel to w
are equal. Since w does not change its direction, it is true all the time. It means that
acceleration is also the same.

So, there's no point in studying the distribution of velocities and accelerations in the
entire body. It is enough to understand how they are distributed in the section S parallel to
the plane of motion IT.

va X’ This section is called plane figure. In all
‘\ 0 parallel sections the distribution of velocities and
A . . . .
Ya accelerations will be similar.
\\_) Usually, we combine the plane figure with the
X drawing phlane Xy (E1g. 10). The ﬁgure.posmon on
Xa > the plane is determined by three coordinates:
_ xa(t), ya(t), @(t) (21)

Fig.10 They represent the law of plane movement of the

body, which therefore has three degrees of freedom.
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Velocity and acceleration of a plane figure point
Given the law of motion of the plane figure
xa(t), ya(t), o(t)
we can find the vectors of angular velocity w and acceleration &, velocity v, and
acceleration W, of the pole A.
Then, by theorem on distribution of velocity, we can find the velocity of any
arbitrary point B of the plane figure.
Vg = V,+ w XAB
All three vectors lie in the plane of the figure. The last term w x AB 1is
perpendicular to AB and directed toward the rotation of the figure (Fig. 1). Therefore, this
term is called here velocity of the point B around the pole A - Vg,.
Vg = Vy+ Vgys Vs = w X AB (D
Differentiating (1) we find
acceleration of the point B
Vg = Vs+ @ xAB + w x AB

V,=®x AB

WB:WA+WBA;

Wyp = Wyp + Wi (2)

Wy, =exAB;, W3
Puc.1 =w x Vgy;

We see that acceleration of an
arbitrary point B of the plane figure consists of acceleration of the pole W, and acceleration
Wsa of the point in rotation around the pole A. Acceleration Wga, as it should be, has the
rotary component Wfl};, directed perpendicular to AB in the direction of the angular
acceleration € and centripetal component W%, always directed to the pole A (Fig. 1).

Given that vectors @ and € are directed perpendicular to the plane figure, all above
components are in the plane of the figure and have modules:
W5 = ¢ AB W,5°¢ = w24B  (3)

Acceleration Wpa module

Wap = \/WABbp2 + W%
Angle 3 of WaB to AB is the same for all points
WABbp &

tgph = =— 4
9B = e = o “
Equivalent matrix formula (1) and (2) in any coordinate system have the form:

Vg =V, + Q(AB), Wg =W, + (€ + Q) (4B) (5)

Instantaneous Center of velocities. Velocity distribution in the plane figure.

It is difficult to understand from equation (1) how are distributed velocities in the
plane figure. The picture will become clearer, if we introduce the notion of instantaneous
Center of velocities (ICV).

ICV is a point P of the infinite extension of the plane figure, which velocity is zero at
the moment.
Vg) =0

We will show that ICV exists if the angular velocity w is not zero at the moment.

To do this, we multiply from the left side by vector @ the velocity formula for P
Ve = Vyi+ o xXAP =0
Remembering the formula of the double cross product
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P ax(bxc)=b(a-c)—c(a-b)
we find
AP O=wXxVi+wx(wXxAP) =
Va
Puc. 2 =wXVi+w(w AP) —AP(w w) =w x V, — APw?;
a)\_)
(w-AP =0)
Thus (Fig.2):
ap =22 Vs, ap = 8
T w2 T (8

If now we assume P as the pole, formula of velocity will look familiar to rotational motion:
Vg =Vs+wxPB=wxPB
Ve=wx PB (9)
Thus, at the given moment velocities are distributed in the plane figure, as if it is revolving
around ICV 2.
This means that the velocity of any point A of the flat figure is perpendicular to the
line AP and the following relations are true (Fig.3):

Vi = wAP; Vi = wBP; Ve Va _ A7 10
A= QAT VBT WBS ©= 4P T P’ Vs BP (10)
B /?\;p P
P 2 Q&ﬂ
W w
w
Fig.4
Fig.3

Figure 3 tells how to build the ICV P in various cases:
Velocities of two points A,B are parallel to each other and A
perpendicular to AB. In this case, ICV P lies on the intersection of
AB and the line drawn across the ends of the velocity vectors (Fig.
4).

Va

In case when the velocities of two points are parallel, but the
points do not lie on the same perpendicular line Fig. 5 the

perpendiculars to the velocities intersect in infinity and Fio 5
VA 18.

Directions of velocity are known for two points: for
example, for points A and B of rod AB moving along the axis (Fig.
6). According to Fig.3 ICV 2 is on the crossing of perpendiculars A {
to these velocities. By the way, knowing the position of P, it is C
easy to determine the direction of velocity for an arbitrary point C
of the rod: it is perpendicular to CP and in the direction of rotation.
Rolling without slipping of the plane figure on the curve, such as
the wheel on the road. B

Contact point P is the instantaneous Centre of velocity.

Wheel circumference is often mistaken for the trajectory of the

point A and its velocity mistakenly refer tangentially to the circle, while
it is perpendicular to AP. As we can see, no any point of the wheel does
have velocity, directed against the wheel center movement. So stone,
separated from the wheel, is always moving forward

N~
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Instantaneous Center of Acceleration (ICA).
Distribution of accelerations in the plane figure
ICA is the point Q, which acceleration is zero at the moment. We will show that
ICA exists if o, €, are not equal to zero simultaneously. From vector W 4 at the direction of
¢ we draw angle (Fig.8)
B = arctg (%)
At this direction we draw
w
40 = =
Acceleration of the point Q
Wo=W,u+ Wy,
It is clear that W, is
opposite to W4. It’s modulo equals

W, = AQVe? + w* = W,

It means that Fig.9
WA = _WAQ and WQ =0
1.e. Q is the instantaneous Center of acceleration.  If now we choose the pole in Q, the
formula of acceleration of an arbitrary point A will be the same as for the rotational motion:
Wy=Wy= Wy, +Wio; W, = AQVe? + w* (11)

This means that accelerations in the plane figure are distributed as if it is revolving around
the ICA Q (Fig. 9). On the straight line passing through the Q, acceleration are parallel and
have the angle 3 with the direction to Q. Module of acceleration linearly depends on the
distance from the Q.

It should be emphasized that, in general, the ICV and the ICA do not coincide. So,
for the wheel moving uniformly and without slippage, ICV is at the
point of its contact with the road, and the ICA is at the center of the
wheel. Since ¢ = 0 and § = 0, the accelerations of all points are
directed to the center of the wheel (Fig.10).

Another example is the rod which end A slides uniformly
along the wall and the end B along the floor. It is obvious that Q is the

Wa

ICA, accelerations of all points Fig.10
A Q P are horizontal (as Wg) and linearly depend on the
distance from Q (fig. 11).
Va=Const Thus, the formulas for velocities and
We AN accelerations show that plane movement of the body
Ve can be thought of as a result of addition of two
B Wg Vg movements: translation with the pole plus rotation
Fig.11 around the pole
Example of solving a problem about a plane mechanism
using vector and matrix methods
The slider-crank mechanism (Fig. 23), consisting of a crank B
OA, a connecting rod AB and a slider B, moves in the plane of the X
drawing. The straight-line x, along which the slider B moves, does
not pass through the axis of rotation O of the crank and in this case
the slider-crank mechanism is called non-central. Lengths of links:
OA=AB=1m, K 2 0
Puc.23

The slider B moves according to the law x = - 6/1 Sin(Ttt/6)
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The mechanism is shown at the moment of time t; = 1¢ when a=60°

In this position of the mechanism, determine:

the velocities and accelerations of the points B and A,

the angular velocities and accelerations of the crank and connecting rod.

Vector method.
Speeds

Slider B.
In projection on the x-axis

Tt
Vgy = x = —Cos (Z)' nput=ty: Vg, =-087m/c

The direction of the vector VB is determined by the sign of the projection.

Connecting rod AB.

The position of the MCV (point P) of connecting rod AB is found using the known
velocity Vi and the known direction of the velocity of joint A. To do this, we draw
perpendiculars through points A and B to the directions of the velocities of these two points
until they intersect at point P.

The angular velocity wyp of the connecting rod AB is determined by velocity of
point B using the formula

Vg Vg 0,87

Wgap =55 = — = =1c™*
BP ABSina 0,87

1c

Hinge A

Knowing w,p and the position of the MCV P, we find the velocity of hinge A

V4 = wyp AP = (A)ABABCOSC{ =05 M/C

Crank OA

The angular velocity wo,4 of the crank OA is determined through the known velocity
of point A using the formula

— E =0 5 -1
Woyg = 0A =VyU,ocC

Accelerations.
Slider B.

In projection on the x-axis

T mt
Wg, = % = gSin (Z)' nput =t;: Wy, = 0,26 M/c?

The direction of the vector Wy is determined by the sign of the projection.

Hinge A.

Hinge A moves in a circle around the axis O.
Therefore, its acceleration consists of rotational W7°¢
and centripetal W3¢ accelerations. The latter is always
directed toward the center O.

WAOC = (DOAZOA = 0,25 M/C2

W7° is perpendicular to OA. But its direction is
unknown. A similar situation was encountered with
reactions of bilateral constraints. For them, the line of
action is known, but the direction is unknown. We

Puc.24
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direct such a vector arbitrarily and highlight it by underlining. The direction of such a vector
is opposite to the shown direction if its value in the answer is negative.
Let us express the acceleration of the hinge A through the acceleration of the pole B

WP+ W =Wy + W5 + W55 (10)

In this vector equation there are two scalar unknowns: rotational accelerations W, and
W, . The acceleration modulus W, can be calculated

Wos = wyp?AB = 1 M/c?

To find the acceleration modulus Vl{qu, we project equation (10) onto the direction AB.
W, PSina + W Cosa = WgCosa + W,§

Thus
WP = (WgCosa + W5 — W Cosa) /Sina
=(0,26-0,5+1-0,25-0,5)/0,87 = 1,16 m/c?

A positive result means that Fig. 24 shows the correct vector direction.

Crank OA

The angular acceleration of the crank OA is directed in accordance with the direction
of the rotational acceleration sz clockwise. Its modulus

gon = WP /0A = 1,16¢72

Connecting rod AB

The angular acceleration of connecting rod AB can be found through the rotational
acceleration Wj‘; .
Projecting equation (10) onto y, we obtain:

WP = —w, Y Cosa + WSSSina

Thus

W,y = (=W, P + WpsSina)/Cosa = 2 (=1,16 + 1-0,87) = —0,58 m/c?

The negative result indicates that the actual direction of the vector Wi% is opposite to
the direction shown in Fig.24.
The angular acceleration of the connecting rod corresponds to the direction of the vector
W, clockwise. Its modulus

eag = W,y /AB = 0,58¢72
Matrix Solution

Velocity
Velocity Formula

VB = VA + QAB(AB)

©) =)+ (6, ") o)

Or

In expanded form
VBx =x= _¢ABAB Sina

O = VAy + (pABAB Casa
Thus
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x 0,87

0 = — = = -1
P48 =~ 4B Sing 087 L€

Counterclockwise. The result coincided with the vector method.
Since

VAy - _(pOA
We have

, VAy -1
QY = —m— 0,5C

The result coincided with the vector method.

Accelerations
Acceleration Formula

Ws = (€ +02)(0A) + (€45+ Qap>)(AB)
The matrices have the form

—0? -G T2
€+02 = ( v ¢> €apt Qap’ = ( Vs fpf‘Bz>
¢ -2 $ap —Pas
_ (—0A _ (AB Cosa
(04) = ( 0 ) (AB) = (AB Sina)

Substituting, we find
. _ :2 o _ . - 2 o
=07 Z2)een=( )i

9 Pap  —PaB
Having expanded, we obtain two equations with two unknowns ¢ and @45

¥ = 0A@? — AB Cosa ¢a5° — AB Sina {5

0 = —0Ap + AB Cosa (45 — AB Sina ¢5°
Thus
(0A¢2 — X — AB Cosa gbABZ) =

P48 = 4B Sina

_ _ I -2
0187(0,25 0,26 — 0,5) = —0,58 ¢

1 , 2
Q= ﬁ(AB Cosa ¢ap — AB Sina @45 ) =

=—-0,29—-0,87 = —1,16 ¢ 2
The result coincided with the vector method.

Interactive excel problems
on the kinematics of a plane mechanism
At each step of the solution, the incorrectly filled cell is colored pink, which allows the
student to independently find the error.
The problems and an example of its solution can be downloaded from the link
https://disk.yandex.ru/d/-VD2FOMK gSd31A
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22
Resultant rotation of rigid body

Theorem on composition of body angular velocities
Let the body rotate with angular velocity er relative to moving coordinate system X y
z, which in turn rotates with angular velocity ®e relative to conventionally fixed coordinate
system X Y Z (Fig. 1).
Consider a body vector a. Observer O in the mobile

Wy system will write the formula Eulerian for relative
7 é derivative of the vector a.
dra
7 y T=w,xa (1)

O The observer O in the motionless system Euler's
formula will write the formula Eulerian for absolute

X e derivative of the vector a.
da
- = X
X0 Fig.1 Y ar ~ Pl )
As we know, both derivatives are related by
da _ dra
&= T @eXa 3)

Thus,
WegXa=w,Xa+w,.xa 4
Since a is an arbitrary body vector, then it follows from (4) the theorem of angular speeds
composition:
Wq = W, + Wy (5)

Generalisation. If we consider a sequence of N moving coordinate systems, the formula (5)
can be summarized:

N
w, = Zwk+wr (6)
k=1

where )y, - angular velocity of the system number k in relation to the system number om
k — 1, and w, - angular velocity of the body in relation to the system number N.

Composition of body rotations around the parallel axes.

Consider a mechanism consisting of a driver, rotating around a
fixed axis z, with an angular velocity of we and the disk rotating
relative to the driver, with an angular velocity of @r. Obviously,
the disk makes a plane movement

Let first investigate the case when the angle velocities have
the same direction (Fig.2). In this case, the absolute angular speed

W, = W, + W, (7)
is different from zero. This means that there is an instantaneous
center of velocity P, whose speed is zero at this moment:

Fig.2 Vo=0
The point P is in a composite movement, so its speed is equal to
the sum of the transitional and relative velocities
Vp =V +V) =
So,
Vy ==V
Transitional and relative velocity are directed oppositely only at the points of the line OA.
Among them, there is a point P for which:
weOP = w,. AP
We found the location of the instantaneous center of velocity
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O?_ﬂ
oo ®

Thus, in this case, the body makes a plane movement in which the instantaneous
center of velocity P divides "internally" the distance AB back proportionally to angular
velocities.

Now let the directions of the spins be opposite (Fig.3). In this case, the absolute
angular velocity is equal by modulo to the difference

Wq = Wy — We (wr > we)
1]l First, suppose that w, # 0
0O

Then again there is instantaneous center of velocity . But
now it's outside of the segment OA, from the side of the

greater angular velocity. Still
0P  wy
AP w,

The instantaneous center of velocity divides the distance OA

o ||
||| also back proportionally but "externally".
Fig.3

Spins couple

Is called the case when the directions of the spins are opposite and velocity modules
areequal  w, = w,

The disk does not rotate since

® wg =0
rT It executes a circular transitional motion. Just like the cabin of the Ferris
0 wheel. The speeds of all points are equal
A
l“’ V=V,=w0A (9)
e

to the “moment” of spin pair.
Fig.4 P p

Differential and Planetary gears. Villis method
Mechanism, shown in Figure 5, consisting of two wheels in gearing, which are on the
ends of the crank OA, is called the differential if the central wheel

sz rotates.
w0

y and planetary if central wheel does not rotate
A wq = 0
jml Let us find by Villis method the angular velocity w, of the little
wheel if the angular velocities wg4 and w, are known.
Fig.5 The Villis method consists in giving the whole mechanism
the angular velocity —wg,4. According to theorem of angular
velocities composition, crank OA will stop. The mechanism will become a common
external gearing of two wheels with new angular velocities
W1 = W1 — Wou; Wy = Wy — Woy
The new angular velocities are opposite in direction and in inverse proportion to the radii of
the wheels

(7)2 T

—=—-—= (10

B, - (10)
Thus

Wy —Woa N

w1 — Wop T
Or

1
Wy = Wop — :_: (w1 —woa) = = (woa0A — wy1y) (1T)
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For the planetary mechanism
(1)1=0, 0A=T'1+T'2
We get the obvious result

OA
Wy = Wopr —
2 0A r
It is not much harder to find the same result with the plane motion formulas:

1 1
Va=wop04; Vp=wir; Wy = r_(VA —Vp) = r_(wOAOA — wqTy)
2 2

Spherical motion of the body

Euler Angles. The law of motion.

Spherical is called the motion of the body in which one point of the body is fixed.
The name reflects the fact that at this motion all points of the body move on spheres. The
full name of this motion is rotation around a fixed point.
T - y We will show that the position of the
body, can be specified by three angular
coordinates. In classical mechanics most
often, we use Euler angles: angles of
precession i, nutation ¢ and rotation ¢
(Fig. 6).

To do so we will build the body
position in the space using the given
Euler angles values. In other words, we
will superpose axis (x y z) with axes (x ',
y ', z") by three successive turns.

First, we turn (x y z) around the z-axis at the angle of y to axis (X1 y1z) (y1 not shown
on Fig. 6). The axis x; is called the line of nodes. Next, we turn (x; y1z) around the x; -
axis at the angle 0 to axes (X1 y2z ‘) (y2 not shown).

The third and the last rotation we make around the axis z'. The axis (x1y2z")
superpose with axes (x ',y ', z"):

We have shown that the Euler angles determine the position of the body. Thus, the
three functions

y(t), 0(8), p(t)

are the law of spherical body motion. Therefore, we say that such body has 3 degrees of
freedom.

Angular velocity and acceleration of the body

Let us find the angular velocity of the body, using the theorem of angular velocities
composition. It can be used since Euler angles specify the position of each of the coordinate
systems relative to the previous coordinate system.

Body undergoes three rotations with angular velocities: i k around the z-axis,
8 i, around the axis x; and ¢k’ around the z’- axis. According to theorem of angular
velocities composition:

w=pyk+ i+ pk (12)
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Projecting this expression of the fixed axis, we find:
w, = JCosy + PSinySin$;
wy = 9Siny — pCosySinI;
w, = W+ pCosS; (12)
Unlike the rotary motion of the body, where the
angular velocity vector is all the time directed along the fixed
axis, here vector w changes module, and direction. Therefore,

the angular acceleration vector
dw
&= E (13)

directed tangential to the vector hodograph has different direction than w.

Velocity and acceleration of the body point
Let us choose the fixed point O as a pole. Then the velocity of an arbitrary point M
of the body can be found using the formula

V—dr— xr (14
Tar @rT (14)

It follows that the velocity is distributed in the body as if the body is rotating around the
instantaneous axis of S (Fig. 7). This means that the velocities of the points on the axis S
are equal to zero. Modulo of velocity
V = wh
Acceleration of an arbitrary point M
W=eXr+wX(wxr) (15
consists of rotational and centripetal components:
W = W*P + W°; W™ =g Xr; W =wx(wxr) (16)

It will be shown that in spherical motion W*®P and W°¢ are not mutually
perpendicular. Centripetal acceleration W°¢ is directed to the instantaneous axis of rotation,
and W*®P is perpendicular to the plane (€ r).

To vector formulas correspond the matrix expressions of speed and acceleration,
with which it is easy to calculate them at any moment of time.

V =20r; w = (E+02Hr (17)
Example

The movable cone rotates on the still cone without slipping. Set: angle a, length OA
and speed V¢ of the point C.

Determine the velocity and acceleration of the top point A of the rolling cone.

Due to the lack of slip, velocity of the points on the line S wP
of contact are zero now. It is the instantaneous axis and vector of A
angular velocity w is directed along it. \
V. = wCB = wOASinaCosa (18)
So O C
a)—m, VA—(UAK—ZVC (19) LW
Centripetal acceleration W°of the point A is directed to S: & 0
2
oc — ,.2 — ¢
W = w°AK = m (2 0) y 7 Q) S
Constant by module angular velocity w rotates together Puc.3

with the instantaneous axis S around the vertical axis z. Speed of
rotation is equal to

w, = Ve = Ve
€ oc ACCosa

(21)
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Angular acceleration € is tangential to the hodograph of vector w so parallel to V. Thus, in
spherical motion angular acceleration and velocity are not collinear. Find € with Euler
formula:
E=We X W (22)
Thus
2V,°
0A?Sin 2a (23)
Rotational acceleration W*®P of the point A is directed as the cross product
W?P =g x 0OA (24)
perpendicular to OA in the xz plane.

& =w,wlosa =

2
(o

Bp — —
W =204 = sinza *Y
We see that in spherical motion rotational and centripetal accelerations are not
perpendicular.
Finally

W2 = W®? 4+ WO — 2WPPWCos2a (25

Free movement of body

Velocity and acceleration of body point
Consider a free body moving relative to the frame of reference with axes X, Y, Z
(Fig. 12). Body movement is set, if we know the method of determining its position at any
time t. It is enough to set the motion of the pole and
Z rotation of the body around the pole. As will know, the
rotation can be set by three Euler angles
Y(t),0(t), @(t).. Thus, six functions

’ v Xa(0), Y4 (), Z4 () (12)
ra A P(©), 000, ¢(t)
X / A y  represent the law of free movement of a rigid body.

This means that the body has 6 degrees of freedom
Note that the first three functions give us the
velocity V4 and acceleration W4 of the pole. The
Euler angles, let find the angular velocity @ and angular acceleration & of the body.
Velocity of arbitrary point of the body can be found with the velocity distribution
theorem.
V=V4+wxX P
Differentiating theorem, we find
V=Vs+oxp+twxp
Bearing in mind that
w=E&
is angular acceleration of the body, and for body vector p by Euler's formula
p=wXxp
we get the formula of acceleration for the arbitrary point of the body,
W=Wy+exp+wX(wxp)
We have already met the last two terms in the plane movement. As there, let's call them
rotational and centripetal accelerations at its spinning around the pole.

W=Ww,+Wy,, +Wi,
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Resultant motion of particle

Absolute, relative and translational motions

We know that the laws of Mechanics are only performed in inertial reference system.
So, as we know, can be considered a heliocentric system. Let's call this system the absolute
and associate it with X, Y, Z. Movement of the particle M relative to the absolute system is
described by radius vector r (t) and is called absolute. Will mark the speed and acceleration
of the particle in absolute motion with "a" index:

Vo, W,

Sometimes it is more convenient to describe the particle motion in relation to the
carrying body, on which moves the particle (Fig.1). For example, the motion of the car is
more naturally described in relation to Earth, and not to the Sun.

Likewise, we describe the movement of the
74 z passenger in relation to the tram (to the body) and not
y to the ground. Movement in relation to the carrying
body is called relative. We will mark speed and
r A acceleration of relative motion with "r" index:
V,, W,
> Associate with the carrying body axes x, y, z.
Relative motion is set by projections of relative radius-
Fig.1 vector p (t) on the axis
x(t),y(t), z(t)
Let the movement of the carrying body in
relation to the "absolute" system of reference be specified by coordinates of the pole
and by Euler angles:

VN

Xa(t), Ya(t), Z4(8)
P(6),0(0), ¢(t)
These laws define the speed and acceleration of the pole V4, W, and angular speed
o and acceleration ¢ of the carrying a body.
We call translational speed and acceleration
Ve, W,
of the particle M the speed and acceleration of that particle of the carrying body, with which
coincides at the given moment the particle M. In other words, the speed and acceleration of
the particle M, fixed on the carrying body.
Let us find the absolute speed and acceleration of the particle M with the help of the
given characteristics of translation and relative movements.
Vafwa (VA ,WA P @, g) (1)

Absolute and relative derivatives relationship
From Fig.1 we have
T=Tqtp (2)

Fig.1 and formula (2) are the same as for the free body movement, but with one
crucial difference. Here the vector p is not a body vector. Its module is changing, because
the particle M moves in relation to the body. For this reason, we cannot apply Euler's
formula to the vector p.

Representing vector p in the moving reference system with the relative motion law:

p=xi+yj+zk 3)

Here i, j, k- unit vectors of the moving system, rotating with the body.

Differentiating (2) in time, we find
Va=Va+p 4)
Differentiating (3) in time, we find:
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._dp_”+.qu+ dﬁ+ W+ dk
P="gg =X T T2 T X T Y e T P
Basis vectors i, j, k are the body vectors, so their derivatives we find with Euler formulas
di _ X i Y _ X J; dk _ x k 5
a7t @ Tl g T ®)
Thus,
dp _d.p
- = X
de ~ dr TexP (6)
Here we design the relative derivative
d
2 ivyjak ()

It describes the change of vector p in relation to the carrying body.

Formula (6) expressed the theorem of derivatives: absolute derivative of the vector
specified in the mobile system, equals relative derivative plus the cross product of angular
velocity by vector.

Note that at translation motion of the carrying body (® = 0) derivatives are similar.

dp _d.p _o
E = dt npu w =
Velocities composition theorem.
Formula (4) takes the form
d.p

Va=VA+pr+dt (8)

In mobile system, the column of relative derivative projections has a simple form

d.p (%
- =
dt 7=\
Therefore, the matrix form of formula (8) in the moving axes
Vu=Va+0p+p ©
If we fix the particle on the body at the given moment, then
¢p=0
dt
absolute speed, by definition, becomes the speed of translation.

Ve=Va+wXxp (10)

Let us find the relative speed by fixing the body (V4 = 0; w = 0)
drp
V,=——- 11
Thus, we come to the theorem of velocities composition in vector form
Ve=V,+V, (12)
Absolute speed is equal to the sum of translational and relative speeds.

Example

The disc rotates evenly around the z-axis with angular velocity w = 2c¢™1.
The particle M moves along the disc radius
©1z Ve vy, according to the law

y = 3t? =2t (m).

Find the absolute speed of the particle at moment
of time t1=1s. First, let's solve a problem by method of
stopping. Method consists in examining the relative
X Fig.2 mo_ti(?n by s‘Fopping ‘translation rpgntally, and vice versa.

This is consistent with the definitions of these movements.

Relative motion (o« = 0)
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We mentally stop the disk rotation and find the projection of the relative velocity of the
moving axis y, deriving the law of relative movement:
Viy =y = (6t — 2)|;=1 = 4 M/cek
Translational motion (y=Const)
Fixing the particle M at distance OM = y|,—; = 1M, we find its speed in rotation
Ve = wOM = 2M/cek

Theorem of speed composition
Ve=V.+V,
in projections on the moving axis gives
Vax=—Ve= =25 V=V, =4dm/c,  Vpu=0
Let us find the absolute velocity by matrix method.

0 -1 0 0 0
=0 Q=wl1 0 0f; p=|y]; p=|y
0 0 O 0 0

Find the projections of absolute velocity of the moving axis:

Vax 0 -1 0 0 0 -2
Voy | =Qp+p=2({1 0 of(3t2—2t)+(6t—2])=| 4 |m/c  (13)
Vi 0 0 0 0 0 0

We see that the results are the same with the stopping method.

Acceleration composition theorem

Differentiating the velocity composition theorem in vector form (10), we find

W,=Wy+texp+wxp+V, (14)
Vectors p and Vr are set in mobile system, so their absolute derivatives are given by the
derivatives theorem
p=w><p+%=w><p+vr (15)
dTVT
dt

It is remarkable that in these both expressions the component w X V,. is derived
from two different formulas: w X p and V,. In the first case, the product of w X V,
characterizes the change of the transitional speed w X p due to changes in the relative
position of the particle.

In the second case, the product of @ X V,. characterize the change of direction of the
vector of relative speed of V,. by turning carrying body with an angular velocity w.

Thus, two products @ X V,. characterize the mutual influence of relative motion on
rotary transitional speed and of transition rotation on the relative speed. It is amazing what
these effects are identical!

woxp=wxV,+ox(wxp); V,=wxV,+

We get
d, Vv,
Wo,=Witexpt+wX(wxp+V,)+wXxV,+ It
Combining the similar terms, we find
d. v
W,=Wy+exp+wx(wxp)+2(wxV,)+—— (16)

dt
It is better to write the matrix form of formula (16) in the mobile reference system in

which the last component looks most simple:
Wo=W,+(E+Q%)p+2Qp+p (17)
To find the transitional acceleration, we fix, by definition, the particle on the carrying
body. Then V,. W, = 0 and absolute acceleration becomes the transitional one by
definition.
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W,=Wy+exp+wX(wXxXp) (18)

We see that formula (18) is the same as the formula for the acceleration of the body
particle, as it should be by definition. Stopping the carrying body (W4, w, € = 0), we find
the relative acceleration

dVy

W, = 19

Component
W.=2(wxV,) (20)
is called additional or Coriolis acceleration
We come to Coriolis theorem
W,=W,+W,.+W, (21)

We see that unlike the speeds, the sum of transitional and relative accelerations does
not give, in general, the absolute acceleration. That is why Coriolis acceleration is called
additional.

This acceleration is named after the French scientist Gustave Gaspard Coriolis, who
described it for the first time in 1833 (by Gauss in 1803, and by Euler in 1765 year (!)).

The necessity of Coriolis acceleration is evident from the following simple example.
Platform of radius R rotates evenly with angular velocity o (Fig. 3). The man runs on the
edge of the platform against the rotation with relative speed

V. = oR,

- © : Thus, in relation to the Earth the man is motionless, and its
absolute acceleration is zero. However, the sum of transition and
relative accelerations is not zero.

We=Wr+W Really, the relative acceleration W,. being a normal
Fig.3 acceleration of the particle, is directed toward the center of the
platform and is equal to:
VTZ

W, =1 = w?R
T R w

Transitional acceleration of the particle, being centripetal acceleration particle is also
directed toward the center of the platform and is equal to the relative acceleration
W, = w’R =W,

The sum of accelerations
W, + W,

is directed to the center and is not equal to zero.

W, + W, = 2w?R

Only the Coriolis acceleration W ensures the absence of absolute acceleration.

Vector of angular velocity w is into the drawing, so W is directed from the center and by
modulo it equals

W, = 2wV, = 2w?R
Now, according to acceleration theorem absolute acceleration W, becomes zero. In

projections on the radius:
Wo = W, =W, =W, =0

Coriolis acceleration

W,=2(wxV,) (22)
It is directed according to the rule of the right screw and is zero in three cases
W.=0:

1. Carrying body in translation or reverses the direction of rotation (w = 0)

2. Relative velocity V,. is parallel to the angular velocity of the body ®. So W, =0
when driving along the meridian at the intersection of the Earth's equator.

3. Particle stopped on the carrying body (V,. = 0)
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On this basis, we conclude that Coriolis acceleration describes:
1. The change of the transitional speed w X p due to changes in the relative
position of the particle.
2. The change of direction of the vector of relative speed of V,. by turning
carrying body with an angular velocity w.

Example of solving a problem using vector and matrix methods

Let's take the same example as in for theorem of velocities composition
o=2c'. y=3t2-2t (m).

First, we use the stopping method (Fig. 4) o 1

\ W,
Relative motion (v = 0) A %Wr
< > > y
M _V,

Wy, = & = 6 M/C? °
Translational motion (V,. = 0) We
We = w’x|=1 = 4 m/c?

Coriolis acceleration X Puc.4
W, = 2wV, = 16 m/c?
Coriolis's theorem in projections on rotating axis

Wax:_VVc:_16M/C2; Way:VVT_VVeZZM/CZ; W,=0

The same result we get by matrix method.
W,=W,+(E+Q)p+p+2Qp
In moving axis:
W,=0;, E=0=0

1 0 0 0 0 0
ey ) 0-() o) o)
0 00 0 0 0
Wo=(Q%)p+p+20p
x 1.0 0 0 0 -1 0 0 0
» =—w2(0 1 O><3t2—2t>+2w<1 0 0)<6t—2)+<6)
2 0 00 0 0 0 0 0 0/ =1
—-16
=( 2 )M/CZ
0

We see that the results are the same.
Advantage of matrix method is the possibility to get the result for any moment of time
without drawing vectors.

SR

Interactive excel problems
on kinematics of resultant motion of particle
At each step of the solution, the incorrectly filled cell is colored pink, which allows
the student to independently find the error.
The problems and an example of its solution can be downloaded from the link
https://disk.yandex.ru/d/KUS3FkBiatmT_A



https://disk.yandex.ru/d/KUS3FkBiatmT_A
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