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Abstract 

A simple derivation of the Euler formula for the angular velocity of a rigid body is 

formulated. 

A matrix method for solving problems of kinematics of resultant motion of a particle 

and plane motion of a rigid body is proposed. 

Sets of interactive excel problems on the kinematics of a particle, resultant motion of 

a particle and plane motion of a body are presented. They allow the student to independently 

correct errors noted by the program at each step of the solution, and freeing the teacher from 

the work of checking the task. 
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Kinematics of particle 

  Kinematics- part of Mechanics that explores the ways of description of the motion of 

a particle and rigid body.  The motion is studied over time and relative to some reference 

frame - "hard" 3D-space in which the observer is able to measure the distances and time. 

The reference frame may have multiple coordinate systems, but they will all belong to the 

same reference system. 

Time t is a scalar, monotonically increasing value from 𝑡 = 0  known as initial moment. In 

classical mechanics, time is considered to be the same in all frames of reference.  

 

Methods of description of particle motion.  

To describe the particle motion means to determine the position of the particle in 

space at any given moment of time.  Let us consider three ways of description of the particle 

motion:  vector, coordinate and natural. 

Vector method.  

This is the main method, since most of the motion characteristics are vector 

quantities. The particle position in the reference frame at a given moment of time t is given 

by the radius vector of the particle (Fig. 1).  

Vector-function 𝒓(𝑡)  of scalar argument t is a vector 

law of motion. Direction and module of radius-vector 

change over time and the particle M moves along the 

curve called a trajectory of the particle.    

            Hodograph of the vector function is a curve 

described by the vector end while the scalar argument 

changes, and the beginning of the vector is fixed. It is 

clear that the hodograph of the radius-vector of the particle is its trajectory. 

Coordinate method  

If we link a system of coordinates, for example, the Cartesian to the reference frame 

then the radius-vector can be described by its projections   
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𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)                   (1) 

the law of M motion in Cartesian coordinates. Motion equations (1) describe the particle 

trajectory (with time t parameter). If we eliminate the parameter t, we will get the equation 

of the trajectory: 

𝑓1(𝑥, 𝑦, 𝑧) = 0;               𝑓2(𝑥, 𝑦, 𝑧) = 0 

The trajectory is the portion of this curve, which corresponds to the  𝑡 >  0 

In cylindrical coordinates (Fig. 1) the law of motion is 

𝜌(𝑡), 𝜑(𝑡),    𝑧(𝑡)                            (2) 

In spherical coordinates (Fig. 1) 

𝑟(𝑡),   𝜑(𝑡), 𝜃(𝑡)  (3) 

Natural method  

            It is useful when the trajectory of the particle is known beforehand (Fig. 2). Rails, for 

example, specify the path of the tram, so here we use the natural method.  

To describe the position of the particle on the trajectory at a given moment of time we would 

need indicate on the trajectory a start point М𝑜, the 

positive direction (+), and the function of the curvilinear 

coordinate 𝜎(𝑡) − the arc М𝑜М length with the 

appropriate sign.  

It is convenient to choose the position of the particle at 

the initial moment 𝑡 = 0, as a start point М𝑜 and 

direction of its motion as a positive-direction. 

Function (t) iscalled natural law of motion. We should not confuse it with the path 

𝑠(𝑡) that is a monotonically increasing function. Meanwhile coordinate 𝜎(𝑡)  can change its 

sign and go to zero. As for the tram, returning to the depot, coordinate 𝜎(𝑡)becomes zero, 

while the path 𝑠(𝑡)  reaches its maximum value (Fig. 3).  

 

Derivative of vector functions by scalar argument  

Consider a vector function 𝒂(𝑢) of scalar argument 𝑢. With the 

change of the scalar u the end of the vector a describes a 

hodograph (Fig 4).   An increment ∆𝑢 of parameter u causes 

increment ∆𝒂 of vector-function.  Let the argument decrease  

(∆ u < 0).   Then vector ∆𝒂/∆𝑢  is directed opposite to the 

increment of ∆𝒂.  We call derivative of vector functions by 

scalar argument vector 

𝑑𝒂

𝑑𝑢
 = lim

∆𝑢→0

∆𝒂

∆𝑢
                  (4) 

While the increment ∆u is tending to zero the secant ∆𝒂 is tending to tangent position.   

Thus, the vector derivative is always tangential to hodograph of vector-function.  

• 
• M 

Mo (t) 

 

+ _ 

Fig.2 

Fig.3 
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Consider the basic properties of the vector derivative.  

The derivative of vector-constant function is zero:  

𝒂 = 𝑪𝒐𝒏𝒔𝒕 →             
𝑑𝒂

𝑑𝑢
= 𝟎           (5)   

The derivative of vector function, constant by its module, is not zero since the vector 

still changes its direction.  As to the derivative direction, since the hodograph of the function 

rests on the sphere of radius a, so the derivative is tangent to the vector itself. 

𝑎 = 𝐶𝑜𝑛𝑠𝑡  →                    
𝑑𝒂

𝑑𝑢
⊥  𝒂     (6) 

Such vectors are, for example, the vectors, connecting any two particles of a rigid body.  

Next, go the properties deduced from linearity of differentiation operator 

𝑑

𝑑𝑢
(𝒂 + 𝒃) =

𝑑𝒂

𝑑𝑢
+

𝑑𝒃

𝑑𝑢
  

𝑑

𝑑𝑢
(𝒂) = 

𝑑𝒂

𝑑𝑢
 

 
𝑑

𝑑𝑢
(𝐚 · 𝐛) =

𝑑𝒂

𝑑𝑢
∙ 𝐛 + 𝐚 ∙

𝑑𝒃

𝑑𝑢
    (the order of factors can be changed!) 

𝑑

𝑑𝑢
(𝒂 × 𝒃) =

𝑑𝒂

𝑑𝑢
 ×  𝒃 +  𝒂 × 

𝑑𝒃

𝑑𝑢
      (the order of factors cannot be changed!)  

 

We will prove the most practically important property:  

Projection of a derivative is equal to the derivative of the corresponding projection 

(
𝑑𝒂

𝑑𝑢
)

𝑥
=

𝑑𝒂𝒙

𝑑𝑢
                  (7) 

We will present the vector by its projections on the axis x, y, z with unit-vectors 𝒊, 𝒋, 𝒌 

𝒂 = 𝑎𝑥𝒊 +  𝑎𝑦𝒋 +  𝑎𝑧𝒌 

Take the time derivative, given that unit-vectors are constant: 

𝑑𝒂

𝑑𝑢
=  

𝑑𝑎𝑥

𝑑𝑢
𝒊 +

𝑑𝑎𝑦

𝑑𝑢
𝒋 +

𝑑𝑎𝑧

𝑑𝑢
𝒌 

On the other hand, you can submit derivative also via its projection 

𝑑𝒂

𝑑𝑢
=  (

𝑑𝒂

𝑑𝑢
)

𝑥
𝒊 + (

𝑑𝒂

𝑑𝑢
)

𝑦
𝒋 + (

𝑑𝒂

𝑑𝑢
)

𝑧
𝒌 

Comparing the two expansions, we conclude that property 7 is right. In Mechanics, for the 

sake of brevity the time derivative we mark by a dot over the letter: 

𝑑𝒂

𝑑𝑡
≡ �̇� 

Velocity and acceleration of particle with vector and coordinate methods 

Vector method 

Velocity 

Particle velocity and acceleration are vector quantities, so 

let's define them in vector method. 

We call the velocity of the particle vector 

r(t) 

v 
 

Рис.5 

М 
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𝑽 ≡
𝑑𝒓

𝑑𝑡
≡ �̇�            (8) 

From the definition, it follows that the velocity is tangential to the hodograph of radius-

vector r, i.e. to the trajectory of a particle.  Velocity is directed toward the sense of motion of 

the particle on its trajectory. 

Acceleration 

We call acceleration of the particle vector 

𝑾 =
𝑑𝑽

𝑑𝑡
=

𝑑2𝒓

𝑑𝑡2
= �̈�                  (15) 

Note that if the velocity of the particle is constant by module (uniform motion), the 

acceleration is normal to the velocity as the vector derivative.  This will be confirmed in the 

natural method. 

 

Coordinate method  

Velocity 

Deriving 

𝒓(𝑡)  =  𝑥(𝑡) 𝒊 +  𝑦(𝑡) 𝒋 +  𝑧(𝑡) 𝒌 

by time we get 

𝑽 = �̇�𝒊 + �̇�𝒋 + �̇�𝒌 (9) 

Thus, from the law of motion x (t), y (t) z (t) we can find the vector V 

𝑉𝑥 = �̇�,      𝑉𝑦 = �̇�,     𝑉𝑧 = �̇�;             𝑉 = √𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2; 

𝐶𝑜𝑠(𝑥, 𝑽) =
𝑉𝑥

𝑉
;       𝐶𝑜𝑠(𝑦, 𝑽) =

𝑉𝑦

𝑉
;       𝐶𝑜𝑠(𝑧, 𝑽) =

𝑉𝑧

𝑉
 

Acceleration 

Given the law of motion, we use the derivative properties to find the projections of 

acceleration vector 

𝑊𝑥 = �̇�𝑥 = �̈�,   𝑊𝑦 = �̈�,    𝑊𝑧 = �̈�    (16) 

module and direction of the acceleration vector: 

  𝑊 = √𝑊𝑥
2 + 𝑊𝑦

2 + 𝑊𝑧
2; 

𝐶𝑜𝑠(𝑥, 𝑾) =
𝑊𝑥

𝑊
;       𝐶𝑜𝑠(𝑦, 𝑾) =

𝑊𝑦

𝑊
;       𝐶𝑜𝑠(𝑧, 𝑾) =

𝑊𝑧

𝑊
             (17) 

 

Velocity and acceleration of particle with natural method.  

Frenet Formulas  

Given the law of particle motion on its trajectory 

𝜎(𝑡) 

It is obvious that the radius-vector of the particle is a function of the coordinate 𝜎: 𝒓 (𝜎).  

Frenet formulas define the natural basis of the three orthogonal unit vectors , 𝒏, 𝒃, via 

derivatives:  
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The 1st Frenet formula specifies the ort of the tangent 

 =
𝑑𝒓

𝑑𝜎
      (10) 

  Direction.  

It is tangent to the trajectory, as a derivative of the radius-vector. 

Directed in positive direction of σ, regardless of the particle motion direction (sign of d𝜎).  

Even if dr is directed to the start particle Mo, d𝜎 is negative and the derivative is directed 

toward positive sense of 𝜎 

The module of the derivative is equal to 1 as the limit of the relationship of the chord to the 

arc ∆𝑟 /∆𝜎  

 The 2nd Frenet formula specifies the ort of the main normal n 

𝑘 𝒏 =
𝑑

𝑑𝜎
                (11) 

Direction:  
𝑑

𝑑𝜎
 is normal to   as a derivative of a vector with permanent module. It specifies the 

direction of motion of the end of  when the particle M moves. 
𝑑

𝑑𝜎
𝑖𝑠  directed toward the concavity of the trajectory.  Even if the particle moves to the start 

point Mo (𝑑𝜎 < 0  ) and d is directed toward the bulge of trajectory, the derivative 
𝑑

𝑑𝜎
  still 

is directed toward a concavity in view of negativity of dσ. 

Module k of the derivative 
𝑑

𝑑𝜎
 𝑖𝑠 called the curvature of the trajectory at the particle M.  

Reciprocal value 

𝜌 =
1

𝑘
 

is called the radius of curvature of the trajectory at the point M.     

Ort b of binormal is directed so that ,   𝒏, 𝒃  would be right 

𝒃 = 𝝉 ×  𝒏                     (12) 

We call the plane (, n) the tangent plane to the path at M.  The tangent plane can be 

obtained as a limit position of the plane of the circle through three points of М0  М and М1 

on the trajectory when М0 and М1 tend to M.   The limit value of the radius of such circle 

strives toward the radius of curvature . 

 

Velocity  

Deriving 

𝑽 =
𝑑𝒓

𝑑𝑡
=

𝑑𝒓

𝑑𝜎

𝑑𝜎

𝑑𝑡
= �̇�𝝉                (13) 

Thus 

𝑽 =  𝑉𝜏𝝉, 𝑉𝜏 = �̇�                 (14) 

As we see, the velocity is tangent to the trajectory, and its projection onto the tangent is 

equal to the first derivative of law of motion 

 

Acceleration 

Deriving 
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𝑾 =
𝑑𝑽

𝑑𝑡
= �̈�𝝉 + �̇��̇� = �̈�𝝉 + �̇�

𝑑𝝉

𝑑𝜎

𝑑𝜎

𝑑𝑡
= �̈�𝝉 +

𝜎2̇

𝜌
𝒏                   (18) 

Thus, the acceleration of the particle has two components (Fig.6) 

tangent and normal 

𝑾 = 𝑾𝝉 + 𝑾𝒏              𝑾𝝉 = �̈�𝝉          𝑾𝒏 =
𝜎2̇

𝜌
𝒏             (19)

  

𝑊 = √𝑊𝜏
2 + 𝑊𝑛

2 

Uniform motion is called the case of constant velocity 

module: 

   𝑉 = 𝐶𝑜𝑛𝑠𝑡         (�̇� = 𝐶𝑜𝑛𝑠𝑡).   

Under uniform motion (Fig. 7) the tangent acceleration is zero.  

Thus, the tangent acceleration 𝑾𝝉 characterizes the change of 

velocity module. 

Full acceleration is normal to the velocity.  It disappears in the 

inflection points of the trajectory and is zero when the particle in on a straight line.  

Therefore, normal acceleration  𝑾𝒏 characterizes the change of direction of the velocity 

vector. 

As is known, the acceleration is created by a force.   This can be the active force or 

the force of reaction.  When tramway is turning its normal acceleration created by the rails’ 

reaction depends on the radius of curvature of the trajectory.   

If we dock the straight stretch of rails with the rails of radius R, the 

normal acceleration of tram (and of passengers) instantly changes 

from zero to full scale value (the upper curve in Fig 8).  The same 

way changes the reaction of the rails.  The final and instant change 

of force is called a hit. 

The passengers also feel this shock.  To avoid the shock, the 

curvature radius of the rail on the turn decreases smoothly (the lower 

curve in Fig.8).   

Uniform accelarate motion is a motion with constant tangent acceleration: 

�̈� = 𝐶𝑜𝑛𝑠𝑡 = 𝑊𝜏 

Integrating, we get: 

�̇� = 𝑊𝜏𝑡 + 𝐶1  (20) 

where С1 is the constant of integration, which should be found from the initial conditions: 

𝑡 = 0:     𝜎 = 𝜎0   �̇� = 𝑉0            (21) 

Find: 𝐶1 = 𝑉0   Repeated integration gives the law of the motion of the particle along the 

curve: 

𝜎 = 𝑊𝜏
𝑡2

2
 + 𝑉0𝑡 + 𝜎0 (22) 

W 

Wn 

W 

n 

M 

 
Fig.6 

Wn 

Wn 

W=0 

V 

Fig.7 

Fig.8 
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Example of solving a problem on the kinematics of particle 

The particle moves in the xy plane according to the law 

𝑥 = 4𝑆𝑖𝑛 (
3𝜋𝑡

4
) , 𝑦 = 3𝐶𝑜𝑠 (

2𝜋𝑡

3
)       

Find the velocity and acceleration of the particle, the radius of curvature of the 

trajectory at the moment 𝑡1 = 1с 

Solution 

Initial position at  t=0                  𝑥(0) = 0м,        𝑦(0) = 3м 

At 𝑡1  = 2,8𝑐                               𝑥(2,8) = 1,24м,       𝑦(2,8) = 2,74м 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Velocity 

𝑉𝑥 =  �̇� = 3𝜋𝐶𝑜𝑠 (
3𝜋𝑡

4
)

𝑡=2,8
= 8,96м/с;           𝑉𝑦 = �̇� = −2𝜋𝑆𝑖𝑛 (

2𝜋𝑡

3
)

𝑡=2,8
= 2,56м/с 

𝑉 = √𝑉𝑥
2 + 𝑉𝑦

2 = 9,3м/с     (24) 

Acceleration 

𝑊𝑥 =  �̈� = −
9𝜋2

4
𝑆𝑖𝑛 (

3𝜋𝑡

4
)

𝑡1
= −

6,86м

с2
; 

𝑾𝑥

𝑾𝑦

𝑾𝜏

𝑾𝑛

𝑾 

𝑽𝑥

𝑽𝑦 𝑽 

𝑀0
𝑀1

𝝉 
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  𝑊𝑦 = �̈� = −
4𝜋2

3
𝐶𝑜𝑠 (

2𝜋𝑡

3
)

𝑡1
= −12,02м/с2 

 

𝑊 = √𝑊𝑥
2 + 𝑊𝑦

2 =
13,8м

с2         (26)       

 𝑊𝜏 =
�̇��̈�+�̇��̈�

𝑉
= −9,9м/с2      𝑊𝑛 = √𝑊2 − 𝑊𝜏

2 =
9,6м

с2          

𝜌 =
𝑉2

𝑊𝑛
= 9м            (28) 

 

Excel assignments on particle kinematics can be downloaded from the link 

https://disk.yandex.ru/d/KCqL8Qh3170FHQ 

 

 

 

Kinematics of rigid body  

in development of Mikhail Valentinovich Mironov ideas 

 

Euler's Formula. 

Angular velocity of body  

We will name body vector any vector a, connecting two points of the body.  All 

body vectors are constant in module and change only their directions, turning with the body. 

It is clear that the column of projections of vector a on the axis of stationary system of 

coordinates 

𝑎 = (
𝑥
𝑦
𝑧

)                    (1) 

can be associated with the column of projections of its derivative 

�̇� = (
𝑋
𝑌
𝑍

)                (2) 

by 3 x 3 matrix Ω in the countless ways 

�̇� = Ω𝑎 Ω = (

𝜔11 𝜔12 𝜔13

𝜔21 𝜔22 𝜔23

𝜔31 𝜔32 𝜔33

)                  (3) 

We are interested in whether there exist among these matrixes one matrix  common 

to all body vectors, in other words, describing the movement of the entire body. As is 

known, the time derivative of a vector with permanent modulo is perpendicular to the vector.   

It means for an arbitrary body vector 𝒂: 

𝒂 ∙ �̇� = 𝑎𝑇�̇� = 𝑎𝑇Ω 𝑎 = 0                      (4) 

So  

(𝑥 𝑦 𝑧) (

𝜔11 𝜔12 𝜔13

𝜔21 𝜔22 𝜔23

𝜔31 𝜔32 𝜔33

) (
𝑥
𝑦
𝑧

) = 

= 𝑥2𝜔11 + 𝑦2𝜔22 + 𝑧2𝜔33 + 𝑥𝑦(𝜔12 + 𝜔21) + 𝑦𝑧(𝜔23 + 𝜔32) + 𝑧𝑥(𝜔31 + 𝜔13)
= 0      (5) 

 

Matrix Ω will be independent of body vector, if all coefficients standing by the projections 

of the vector are equal to zero. 

𝜔11 = 𝜔22 = 𝜔33 = 0                        (6)  
𝜔21 = −𝜔12 = 𝜔𝑧       𝜔32 = −𝜔23 = 𝜔𝑥      𝜔13 = −𝜔31 = 𝜔𝑦 

https://disk.yandex.ru/d/KCqL8Qh3170FHQ
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Denote the three non-zero elements of the matrix as in the attached matrix of the 

vector in the right oriented space. 

Ω = (

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
)               (7) 

The elements of the matrix Ω have a simple geometrical meaning. They present the 

projections of the velocity of the end of the first index ort in its rotation around the second 

index ort on the third axis in right oriented space.  

So 

𝜔12 = −𝜔𝑧                      (8) 

It means that the end of ort i moves against the z axis when it rotates around the y 

axis. It is clear why the elements with duplicate indices are zero.   

Thus, common for the all the body-vectors common matrix Ω exists and it is skew-

symmetric. Let's call it the matrix of angular velocity of the body.  With its three elements, 

we can build of the column of projections of body’s angular velocity vector. 

 = (

𝑥

𝑦

𝑧

)                  (9)  

Thus, we come to the Euler formula in a matrix form 

�̇� = Ω𝑎                      (10)    

which corresponds to the vector Euler's formula  

�̇� = 𝝎 × 𝒂                       (11) 

Formula (11) shows that the time derivatives of all vectors in the body are expressed through 

a single and common angular velocity vector. 

 

Theorem on distribution of velocities in a rigid body 

Pole method. 

 Euler's formula gives the opportunity to express the characteristics of movement for 

all points of the body by the same characteristics of one, specially 

chosen point of the body, called a pole.   This method is called method 

of pole. 

         Consider an arbitrary point B in the body.  The main in method of 

pole is the expression of the radius-vector of an arbitrary point of the 

body by the radius-vector of the pole A: 

𝒓𝐵  =  𝒓𝐴 +  𝑨𝑩                (12) 

Differentiating (12) in time, we find 
𝑑𝒓𝑩

𝑑𝒕
=

𝑑𝒓А

𝑑𝒕
+

𝑑𝑨𝑩

𝑑𝒕
;        𝑽𝐵  =  𝑽𝐴 +  

𝑑𝑨𝑩

𝑑𝒕
               (13)  

To the body vector AB the Euler's formula must be applied 
𝑑𝑨𝑩

𝑑𝒕
= 𝝎 × 𝑨𝑩                      (14)  

So, we come to the theorem of velocities in a solid 

𝑽𝐵  =  𝑽𝐴 +  𝝎 × 𝑨𝑩  (15) 

Matrix form of this theorem in an arbitrary coordinate system has the 

form of: 

𝑉𝐵 = 𝑉𝐴 + Ω(AB)                     (16) 

Consequences of the theorem  

If velocities of two points A and B are equal the vector of angular 

velocity is parallel to AB.  For example, in rotation of the body around 

a fixed axis the velocities 

of the points on this axis are equal to zero.  Therefore, the 

angular velocity vector is parallel to the axis of rotation Z. 

AB

rA

rB
A

B

O
Рис.1
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  Usually, we place it on the axis (Fig. 2) and always direct it according to the rule of 

the right screw.  
Inverse is also correct.  The velocities of the points on the line, parallel to the angular 

velocity, are equal at this moment 

𝑖𝑓 𝑨𝑩 ∥ 𝝎     →       𝑽𝑩  =  𝑽𝑨                    (4) 

Theorem of projections. Projections of velocities of two points on the axis that passes 

through these points are equal.   To prove the theorem design z axis that passes through both 

points. In view of the reciprocal perpendicularity 𝑨𝑩 and 

cross product 𝝎 × 𝑨𝑩 we get: 

𝑝𝑟𝐴𝐵 𝑽𝑨  =  𝑝𝑟𝐴𝐵 𝑽𝑩                       (5) 
       This theorem is a natural requirement of that the distance 

between points of a rigid body should rest constant. 

Example:  

Find the velocities ratio for the points A and B of the 

rod of the crank mechanism.  Point A belongs to 

crank OA, rotating around the axis and it moves on 

a circle, so its velocity is perpendicular to OA.  Point 

B velocity is directed along line OB.  With the 

theorem of velocity projections, we have 
 𝑉𝐴𝐶𝑜𝑠𝛼 =  𝑉𝐵𝐶𝑜𝑠𝛽                         (6) 
 

 

Translational motion of a rigid body  

Instant translation is the movement when the body angular velocity instantly turns 

to zero 

𝝎 = 𝟎   (1) 
In this case, 

𝑽𝐵  =  𝑽𝐴 +  𝝎 × 𝑨𝑩 = 𝑽𝐴 = 𝑽  (2) 

That means that at this moment the velocity of all points are equal. For example (Fig.1), at 

the moment when the crank OA ⊥ AB, ω = 0, velocity of 

points A and B are equal.   

If the angular velocity is equal to zero for some 

period of  time, the movement is called translation.   For 

example, the slide B (Fig. 1) moves at translation. 
𝑑𝑨𝑩

𝑑𝑡
= 𝝎 × 𝑨𝑩 ≡ 𝟎 

means that   

𝑨𝑩 =  𝑪𝒐𝒏𝒔𝒕     (3) 

Thus, in translation any body-vector remains parallel to itself.  The 

trajectory of any two points A and B are the same and are shifted to 

the constant vector AB (Figure 2). 

Figure 3 shows a Ferris wheel, 

which cabin makes circular translation 

motion. All points of the cabin, including 

the points A and B are moving along the similar circles with AB 

centers offset.   

In general, all points of the body have different velocities, so the 

terms "velocity" and "acceleration" refer only to the point of the 

body, and the terms "angular velocity” and “angular acceleration" 

refer only to the body.  Only at transition V can be called the velocity of the body (but better 

not to do so). 

 

A 

B 

Fig.3 

VA 

VB= VA O 

A 

B 

Fig.1 

O 

rA 
rB 

A 
B 

Fig.2 
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Differentiating (2), we find that at any given time accelerations are equal for all the 

points    

𝑾𝑩  =  𝑾𝑨
 
=  𝑾                        (4) 

The transition of the body is described by formulas of particle kinematics, since all 

points move the same way.    As it is known, the movement of a particle in space is defined 

by three scalar functions of coordinates.  Thus, in transition the body has 3 degrees of 

freedom. 
   

Rotational motion    

Angular velocity and angular acceleration of body.   

Let the body rotate around a fixed z axis. It is convenient to describe the body 

position by angle of rotation (fig. 4) 

𝜑 = 𝜑(𝑡)                     (5) 

This is the law of body rotation.  Thus, in rotational motion body has 

one degree of freedom.   

As has been shown, the angular velocity  of rotating body is 

directed along the axis of rotation.  So 𝜔𝑥 = 𝜔𝑦 = 0 and matrix of 

angular velocity is: 

Ω = (
0 −𝜔𝑧 0

𝜔𝑧 0 0
0 0 0

) 

Let us find the projection z of the angular velocity on axis z.   

The column of radius vector r projections 

𝑟  =  (
ℎ𝐶𝑜𝑠 𝜑
ℎ𝑆𝑖𝑛𝜑

𝑎

)             ℎ = 𝑟𝑆𝑖𝑛𝛼               𝑎 = 𝑟𝐶𝑜𝑠𝛼                      (6) 

is connected with its derivative 

�̇�   = ℎ�̇� (
−𝑆𝑖𝑛 𝜑
𝐶𝑜𝑠𝜑

0

)             

By Euler formula  

�̇� = Ω𝑟 = ℎ𝜔𝑧 (
−𝑆𝑖𝑛 𝜑
𝐶𝑜𝑠𝜑

0

)  (7) 

 We get 

𝜔𝑧 =  �̇� (8) 

Thus, the angular velocity is the velocity of change of the rotation angle 𝜑 .  Hence 

the name of angular velocity.  Body angular velocity vector is directed so that the right 

screw, rotating with the body, moves toward the axis z of rotation. 

 

Angular acceleration of the body is the vector 

𝜺 =
𝑑𝝎

𝑑𝑡
                     (9) 

Since hodograph of vector 𝝎 lays on the axis of rotation, the angular acceleration vector is 

directed along the axis of rotation.  Differentiating (8) in time, we find: 
𝜺 = �̈�𝒌 = 𝜀𝑧𝒌;         

Thus, projection of angular acceleration on z axis is equal to the second derivative of the law 

of rotation. 

Fig.4 

y 
М 

V h 

r 
α 

 

 

 
z 

x 
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𝜀𝑧  = �̈�                    (10) 

Accelerated is rotation with increasing angular velocity modulus. It is 

obvious that it will be the case if vectors of angular velocity and 

acceleration (left Fig. 5) have the same direction.  Thus, the rotation will be 

accelerated if φ̈φ̇ > 0  0 and decreasing when φ̈φ̇ < 0 

  

 

 

Velocity and acceleration of a point of rotating body 

According to the consequences from the theorem on velocity distribution the 

velocities of the points on the straight line parallel to the axis of rotation are equal.  So, let's 

look at how the velocity is distributed on the cross-section line perpendicular to the axis of 

rotation.   

Since the radius-vector of the point M is a body-vector, the velocity of the point 

comes from Euler's formula 

𝑽 = �̇� = 𝝎 × 𝒓                  (11) 
Matrix form of this formula in any coordinate systems 

𝑉 = Ω 𝑟  (12) 

In accordance with Fig.4 velocity module V equals  

𝑉 = 𝜔 𝑟 𝑆𝑖𝑛 𝑎 = 𝜔ℎ                            (13) 

We see that the velocity module linearly 

depends on the distance h from the axis of rotation.   

Picture of the distribution of velocity on the line, 

perpendicular to the axis is presented in Fig. 6. 
Let us find the acceleration of a point of 

rotating body.  Differentiating (11) in time, 

we find 

 𝑾 =  �̇�  =  
𝑑

𝑑𝑡
(𝝎 × 𝒓)  =  

= �̇� ×  𝒓 + 𝝎 × �̇� = 𝜺 ×  𝒓  + 𝝎 ×  𝑽                   (14) 

Thus, the acceleration of a point of rotating body has two 

components (Fig. 7). 
𝑾 = 𝑾вр + 𝑾ос                      (15) 

Componenet 

𝑾вр ≡ 𝜺 ×  𝒓                     (16) 

is the tangents acceleration, but here it is called the rotational 

acceleration of the point.  Special name introduced because not at all body movements 

𝜺 ×  𝒓  is a tangent to the trajectory of the point (see spherical movement). Rotational 

acceleration points toward the angular acceleration  arrow.  Modulo 

𝑊вр = 𝜀𝑟 𝑆𝑖𝑛𝑎 = 𝜀ℎ 

 Second component 

𝑾ос ≡ 𝝎 × 𝑽   (17) 

is directed to the axis of rotation, regardless of the direction of rotation (vector ) and is 

therefore called the centripetal acceleration of the point.   Vectors 𝝎 and 𝑽 change the 

direction together, so their vector product does not change its direction with changing of 

direction of body rotation.    Modulo 

𝑊ос = 𝜔𝑉 = 𝜔2

 

ℎ 

  

 

 

 

Рис.5  
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The acceleration modulo W and the angle β that it makes with the direction to the axis: 

𝑊 = √𝑊вр𝟐 + 𝑊ос𝟐 = ℎ√𝜀2 + 𝜔4;              𝑡𝑔𝛽 =
𝑊вр

𝑊ос
=

𝜀

𝜔2
 

 We see that the acceleration modulo linearly depends on the 

distance h of the point from the rotation axis, and that angle 𝛽 is the 

same for all points of the body. 

Now it is easy to draw a picture of distribution of accelerations 

in a rotating body. Since on the line parallel to the axis of rotation 

velocities are the same, then the same are accelerations.  So, in all 

planes perpendicular to the axis of rotation, distributions of velocities 

and accelerations are the same.  One of them is shown in Fig. 8. 

Let us calculate the projections of a point M acceleration (Fig.7) on the axis rotating 

with the body by matrix method.  Differentiating (12) by the time we get: 

𝑊 = �̇� = �̇�𝑟 + Ω�̇� = ℇ𝑟 + ΩΩr = (ℇ + Ω2)𝑟                     (18)    

Here ℇ is a skew-symmetric matrix of angular acceleration 

ℇ = �̇� = �̈� (
0 −1 0
1 0 0
0 0 0

)                 (19) 

 

Plane motion of body 

 

Motion law of a plane figure 

The movement of the body is called plane, if the velocities of all its points remain 

parallel to some fixed plane.  An example of such a movement is a cylinder rolling on the 

plane (Fig. 9).   Velocity vectors of all points of the cylinder are parallel to the plane П.     

Multiplying velocity distribution formula  

𝑽𝐵  =  𝑽𝐴 +  𝝎 × 𝑨𝑩 

scalarly by the ort n of the normal to the plane П, we get: 

0 =  𝒏 ∙ (𝝎 × 𝑨𝑩) =  (𝒏 × 𝝎) ∙ 𝑨𝑩            (20) 
Since 𝑨𝑩 – is an arbitrary body vector  

𝒏 × 𝝎 = 0 

       Thus, in the plane motion angular velocity vector 𝝎 

stay parallel to n.          

       We know that the velocities on the line parallel to 𝝎 

are equal.  Since 𝝎 does not change its direction, it is true all the time.  It means that 

acceleration is also the same. 

        So, there's no point in studying the distribution of velocities and accelerations in the 

entire body.  It is enough to understand how they are distributed in the section S parallel to 

the plane of motion П.   

       This section is called plane figure.  In all 

parallel sections the distribution of velocities and 

accelerations will be similar. 

         Usually, we combine the plane figure with the 

drawing plane xy (Fig.10).  The figure position on 

the plane is determined by three coordinates:  

𝑥𝐴(𝑡), 𝑦𝐴(𝑡), 𝜑(𝑡)                (21) 
They represent the law of plane movement of the 

body, which therefore has three degrees of freedom. 
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Velocity and acceleration of a plane figure point  

Given the law of motion of the plane figure 

𝑥𝐴(𝑡), 𝑦𝐴(𝑡), 𝜑(𝑡)                
we can find the vectors of angular velocity 𝝎 and acceleration 𝜺, velocity 𝑽𝐴 and 

acceleration 𝑾𝐴 of the pole A.  

 Then, by theorem on distribution of velocity, we can find the velocity of any 

arbitrary point B of the plane figure.   

𝑽𝐵  =  𝑽𝐴 +  𝝎 × 𝑨𝑩 

 All three vectors lie in the plane of the figure.  The last term 𝝎 × 𝑨𝑩  is 

perpendicular to AB and directed toward the rotation of the figure (Fig. 1). Therefore, this 

term is called here velocity of the point B around the pole A -    𝑽В𝐴. 

𝑽𝐵  =  𝑽𝐴 + 𝑽В𝐴;              𝑽В𝐴 ≡ 𝝎 × 𝑨𝑩                    (1) 

Differentiating (1) we find 

acceleration of the point B  

�̇�𝐵  =  �̇�𝐴 +  �̇� × 𝑨𝑩 + 𝝎 × 𝑨�̇� 

Or 

 𝑾𝑩 = 𝑾𝑨 + 𝑾ВА ; 
 

𝑾𝑨𝑩  =  𝑾𝑨𝑩
вр

 + 𝑾𝑨𝑩
ос                (2) 

 

𝑾𝑨𝑩
вр

 = 𝜺 × 𝑨𝑩;       𝑾𝑨𝑩
ос

= 𝝎 × 𝑽В𝐴; 
          We see that acceleration of an 

arbitrary point B of the plane figure consists of acceleration of the pole 𝑾𝑨 and acceleration 

WВА of the point in rotation around the pole A.  Acceleration WВА, as it should be, has the 

rotary component 𝑾𝑨𝑩
вр

, directed perpendicular to AB in the direction of the angular 

acceleration 𝜺 and centripetal component 𝑾𝑨𝑩
ос , always directed to the pole A (Fig. 1). 

 Given that vectors 𝝎 and 𝜺 are directed perpendicular to the plane figure, all above 

components are in the plane of the figure and have modules: 

𝑊𝐴𝐵
𝑏𝑝 = 𝜀 𝐴𝐵            𝑊𝐴𝐵

𝑜𝑐 = 𝜔2𝐴𝐵     (3) 

 

Acceleration WВА module  

𝑊𝐴𝐵 = √𝑊𝐴𝐵
𝑏𝑝2

+ 𝑊𝐴𝐵
𝑜𝑐2

 

Angle β of WAB to AB is the same for all points 

𝑡𝑔𝛽 =  
𝑊𝐴𝐵

𝑏𝑝

𝑊𝐴𝐵
𝑜𝑐 =

𝜀

𝜔2
                 (4) 

Equivalent matrix formula (1) and (2) in any coordinate system have the form: 
𝑉𝐵 = 𝑉𝐴 + Ω(𝐴𝐵),                    𝑊𝐵 = 𝑊𝐴 + (ℇ + Ω2)(𝐴𝐵)                         (5) 

 

Instantaneous Center of velocities.   Velocity distribution in the plane figure.   

 It is difficult to understand from equation (1) how are distributed velocities in the 

plane figure.  The picture will become clearer, if we introduce the notion of instantaneous 

Center of velocities (ICV).  

          ICV is a point 𝒫 of the infinite extension of the plane figure, which velocity is zero at 

the moment. 

𝑽𝒫 = 𝟎 

 We will show that ICV exists if the angular velocity 𝝎 is not zero at the moment.  

To do this, we multiply from the left side by vector 𝝎  the velocity formula for 𝒫 
𝑽𝒫  =  𝑽𝐴 +  𝝎 × 𝑨𝒫 = 0 

Remembering the formula of the double cross product 
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𝒂 × (𝒃 × 𝒄) = 𝒃(𝒂 ∙ 𝒄) − 𝒄(𝒂 ∙ 𝒃) 

we find 

𝟎 = 𝝎 × 𝑽𝐴 + 𝝎 × (𝝎 × 𝑨𝒫) = 

 

= 𝝎 × 𝑽𝐴 + 𝝎(𝝎 ∙ 𝑨𝒫) − 𝑨𝒫(𝝎 ∙ 𝝎) = 𝝎 ×  𝑽𝐴 − 𝑨𝒫𝜔2 ;        
 

    (𝝎 ∙ 𝑨𝒫 = 𝟎) 
Thus (Fig.2):          

𝑨𝒫 =
𝝎 ×  𝑽𝐴

𝜔2
;                  А𝒫 =

𝑉𝐴

𝜔
                            (8) 

If now we assume 𝒫 as the pole, formula of velocity will look familiar to rotational motion: 

𝑽𝐵 = 𝑽𝒫 + 𝝎 × 𝒫𝑩 = 𝝎 × 𝒫𝑩 

𝑽𝐵 = 𝝎 ×  𝒫𝑩      (9) 

Thus, at the given moment velocities are distributed in the plane figure, as if it is revolving 

around ICV 𝒫. 

 This means that the velocity of any point A of the flat figure is perpendicular to the 

line AP and the following relations are true (Fig.3): 

𝑉А = 𝜔𝐴𝒫;      𝑉В = 𝜔В𝒫;              𝜔 =  
𝑉А

𝐴𝒫
=

𝑉𝐵

𝐵𝒫
;                  

𝑉А

𝑉𝐵
=

𝐴𝒫

𝐵𝒫
           (10) 

 

 

 

 

 

 

 

 

 Figure 3 tells how to build the ICV 𝒫 in various cases: 

Velocities of two points A,B are parallel to each other and 

perpendicular to AB. In this case, ICV 𝒫 lies on the intersection of 

AB and the line drawn across the ends of the velocity vectors (Fig. 

4). 

In case when the velocities of two points are parallel, but the 

points do not lie on the same perpendicular line Fig. 5 the 

perpendiculars to the velocities intersect in infinity and 

𝜔 =  
𝑉А

𝐴𝒫
= 0 

 Directions of velocity are known for two points: for 

example, for points A and B of rod AB moving along the axis (Fig. 

6).  According to Fig.3 ICV 𝒫 is on the crossing of perpendiculars 

to these velocities.  By the way, knowing the position of P, it is 

easy to determine the direction of velocity for an arbitrary point C 

of the rod: it is perpendicular to CP and in the direction of rotation.  

Rolling without slipping of the plane figure on the curve, such as 

the wheel on the road.  

Contact point P is the instantaneous Centre of velocity.  

Wheel circumference is often mistaken for the trajectory of the 

point A and its velocity mistakenly refer tangentially to the circle, while 

it is perpendicular to AP.  As we can see, no any point of the wheel does 

have velocity, directed against the wheel center movement.  So stone, 

separated from the wheel, is always moving forward 

. 

VA 
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Instantaneous Center of Acceleration (ICA).    

Distribution of accelerations in the plane figure 

ICA is the point Q, which acceleration is zero at the moment.  We will show that 

ICA exists if , , are not equal to zero simultaneously. From vector 𝑾𝑨 at the direction of 

  we draw angle (Fig.8) 

𝛽 = 𝑎𝑟𝑐𝑡𝑔 (
𝜀

𝜔2) 

At this direction we draw  

𝐴𝑄 =
𝑊𝐴

√𝜀2+𝜔4
  

Acceleration of the point Q 

𝑾𝑸 = 𝑾𝑨 + 𝑾𝑸А 

It is clear that 𝑾𝑸А is 

opposite to 𝑾𝑨.    It’s modulo equals 

𝑊𝑄 = 𝐴𝑄√𝜀2 + 𝜔4 = 𝑊𝐴 

 It means that  

𝑾𝑨 = −𝑾𝑨𝑸      and   𝑾𝑸 = 𝟎 

i.e.  Q is the instantaneous Center of acceleration.     If now we choose the pole in Q, the 

formula of acceleration of an arbitrary point A will be the same as for the rotational motion: 

      𝑾𝑨 = 𝑾𝑨𝑸 =  𝑾𝑨𝑸
вр

 + 𝑾𝑨𝑸
ос ;          𝑊𝐴 = 𝐴𝑄√𝜀2 + 𝜔4                       (11)  

This means that accelerations in the plane figure are distributed as if it is revolving around 

the ICA Q (Fig. 9).   On the straight line passing through the Q, acceleration are parallel and 

have the angle β with the direction to  Q.  Module of acceleration linearly depends on the 

distance from the Q. 

 It should be emphasized that, in general, the ICV and the ICA do not coincide.   So, 

for the wheel moving uniformly and without slippage, ICV is at the 

point of its contact with the road, and the ICA is at the center of the 

wheel. Since 𝜀 = 0  and 𝛽 = 0, the accelerations of all points are 

directed to the center of the wheel (Fig.10). 

 Another example is the rod which end A slides uniformly 

along the wall and the end B along the floor. It is obvious that Q is the 

ICA, accelerations of all points 

are horizontal (as WB) and linearly depend on the 

distance from Q (fig. 11). 

       Thus, the formulas for velocities and 

accelerations show that plane movement of the body 

can be thought of as a result of addition of two 

movements: translation with the pole plus rotation 

around the pole 

   

  

Example of solving a problem about a plane mechanism  

using vector and matrix methods 

 

 The slider-crank mechanism (Fig. 23), consisting of a crank 

OA, a connecting rod AB and a slider B, moves in the plane of the 

drawing. The straight-line x, along which the slider B moves, does 

not pass through the axis of rotation O of the crank and in this case 

the slider-crank mechanism is called non-central. Lengths of links: 

OA = AB = 1 m, 

 

The slider B moves according to the law x = - 6/π Sin(πt/6) 

Fig.9 

Fig.10 

Fig.11 

А 
О α 
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х 
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The mechanism is shown at the moment of time 𝑡1 = 1c when α=60o 

In this position of the mechanism, determine: 

the velocities and accelerations of the points B and A, 

the angular velocities and accelerations of the crank and connecting rod. 

 

Vector method. 

Speeds 

 

Slider B. 

In projection on the x-axis 

𝑉𝐵𝑥 = �̇� = −𝐶𝑜𝑠 (
πt

6
) ,    при 𝑡 = 𝑡1:    𝑉𝐵𝑥 = −0,87 м/с 

The direction of the vector VВ is determined by the sign of the projection. 

Connecting rod AB. 

The position of the MCV (point P) of connecting rod AB is found using the known 

velocity 𝑽В and the known direction of the velocity of joint A. To do this, we draw 

perpendiculars through points A and B to the directions of the velocities of these two points 

until they intersect at point P.  

The angular velocity 𝜔𝐴𝐵 of the connecting rod AB is determined by velocity of 

point B using the formula 

ω𝐴𝐵 =
𝑉𝐵

𝐵𝑃
=

𝑉𝐵

𝐴𝐵𝑆𝑖𝑛𝛼
=

0,87

0,87
= 1 𝑐−1 

Hinge A 

Knowing ω𝐴𝐵 and the position of the MCV P, we find the velocity of hinge A 
𝑉𝐴 = ω𝐴𝐵 𝐴𝑃 = ω𝐴𝐵𝐴𝐵𝐶𝑜𝑠𝛼 = 0,5  м/с 

Crank OA 

The angular velocity 𝜔𝑂𝐴 of the crank OA is determined through the known velocity 

of point A using the formula 

ω𝑂𝐴 =
𝑉𝐴

𝑂𝐴
= 0,5 𝑐−1 

Accelerations. 

Slider B. 

In projection on the x-axis 

𝑊𝐵𝑥 = �̈� =
𝜋

6
𝑆𝑖𝑛 (

πt

6
) ,    при 𝑡 = 𝑡1:    𝑊𝐵𝑥 = 0,26 м/с2 

The direction of the vector 𝑾𝐵 is determined by the sign of the projection. 

 

Hinge A. 

Hinge A moves in a circle around the axis O. 

Therefore, its acceleration consists of rotational 𝑾𝐴
𝑟𝑜𝑡 

and centripetal 𝑾𝐴
𝑜𝑐 accelerations. The latter is always 

directed toward the center O. 

𝑊𝐴
ос = ω𝑂𝐴

2ОА = 0,25 м/с2 

𝑾𝐴
𝑟𝑜𝑡 is perpendicular to OA. But its direction is 

unknown. A similar situation was encountered with 

reactions of bilateral constraints. For them, the line of 

action is known, but the direction is unknown. We 

А 
О α 

В 
х 
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вр 
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ос 

WAВ
ос 

WAВ
вр 

WВ
 

Рис.24 
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direct such a vector arbitrarily and highlight it by underlining. The direction of such a vector 

is opposite to the shown direction if its value in the answer is negative. 

Let us express the acceleration of the hinge A through the acceleration of the pole B 

𝑾𝐴
вр

+ 𝑾𝐴
ос = 𝑾𝐵 + 𝑾𝐴𝐵

вр
+ 𝑾𝐴𝐵

ос     (10) 

In this vector equation there are two scalar unknowns: rotational accelerations 𝑊𝐴
вр

 and 

𝑊𝐴𝐵
вр

. The acceleration modulus 𝑊𝐴𝐵
ос  can be calculated 

𝑊𝐴𝐵
ос = ω𝐴𝐵

2𝐴𝐵 = 1 м/с2 

To find the acceleration modulus 𝑊𝐴
вр

, we project equation (10) onto the direction AB. 

𝑊𝐴
вр

𝑆𝑖𝑛𝛼 + 𝑊𝐴
ос𝐶𝑜𝑠𝛼 = 𝑊𝐵𝐶𝑜𝑠𝛼 + 𝑊𝐴𝐵

ос  

Thus 

𝑊𝐴
вр

= (𝑊𝐵𝐶𝑜𝑠𝛼 + 𝑊𝐴𝐵
ос − 𝑊𝐴

ос𝐶𝑜𝑠𝛼)/𝑆𝑖𝑛𝛼 

= (0,26 ∙ 0,5 + 1 − 0,25 ∙ 0,5)/0,87 = 1,16 м/с2 

A positive result means that Fig. 24 shows the correct vector direction. 

 

Crank OA 

The angular acceleration of the crank OA is directed in accordance with the direction 

of the rotational acceleration 𝑾𝐴
вр

 clockwise. Its modulus 

𝜀ОА = 𝑊𝐴
вр

/𝑂𝐴 = 1,16с−2 

Connecting rod AB 

The angular acceleration of connecting rod AB can be found through the rotational 

acceleration 𝑾𝐴𝐵
вр

 . 

Projecting equation (10) onto y, we obtain: 

𝑊𝐴
вр

= −𝑊𝐴𝐵
вр

𝐶𝑜𝑠𝛼 + 𝑊𝐴𝐵
ос𝑆𝑖𝑛𝛼 

Thus 

𝑊𝐴𝐵
вр

= (−𝑊𝐴
вр

+ 𝑊𝐴𝐵
ос𝑆𝑖𝑛𝛼)/𝐶𝑜𝑠𝛼 = 2 ∙ (−1,16 + 1 ∙ 0,87) = −0,58 м/с2 

The negative result indicates that the actual direction of the vector 𝑾𝐴𝐵
вр

 is opposite to 

the direction shown in Fig.24. 

The angular acceleration of the connecting rod corresponds to the direction of the vector 

𝑾𝐴𝐵
вр

 clockwise. Its modulus 

𝜀АВ = 𝑾𝐴𝐵
вр

/𝐴𝐵 = 0,58с−2 

Matrix Solution 

Velocity 

Velocity Formula 

𝑉𝐵 = 𝑉𝐴 + Ω𝐴𝐵(𝐴𝐵) 
Or 

(
�̇�
0

) = (
0

𝑉𝐴𝑦
) + (

0 −�̇�𝐴𝐵

�̇�𝐴𝐵 0
) (

𝐴𝐵 𝐶𝑜𝑠𝛼
𝐴𝐵 𝑆𝑖𝑛𝛼

) 

 

In expanded form 

𝑉𝐵𝑥 = �̇� = −�̇�𝐴𝐵𝐴𝐵 𝑆𝑖𝑛𝛼 

0 = 𝑉𝐴𝑦 + �̇�𝐴𝐵𝐴𝐵 𝐶𝑜𝑠𝛼 
Thus 
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�̇�𝐴𝐵 = −
�̇�

𝐴𝐵 𝑆𝑖𝑛𝛼
=

0,87

0,87
= 1 𝑐−1 

 

Counterclockwise.  The result coincided with the vector method. 

Since 

𝑉𝐴𝑦 = −�̇�𝑂𝐴  

We have 

�̇� = −
𝑉𝐴𝑦

𝑂𝐴
= 0,5 с−1 

The result coincided with the vector method. 

 

Accelerations 

Acceleration Formula 

𝑊𝐵 = (∈ +Ω2)(𝑂𝐴) + (∈𝐴𝐵+ ΩAB
2)(𝐴𝐵) 

The matrices have the form 

 

∈ +Ω2 = (
−𝜑2̇́ −�̈�

�̈� −𝜑2̇́
)              ∈𝐴𝐵+ ΩAB

2 = (
−�̇�𝐴𝐵

2́ −�̈�𝐴𝐵

�̈�𝐴𝐵 −�̇�𝐴𝐵
2́

) 

(𝑂𝐴) = (
−𝑂𝐴 

0
)          (𝐴𝐵) = (

𝐴𝐵 𝐶𝑜𝑠𝛼
𝐴𝐵 𝑆𝑖𝑛𝛼

) 

Substituting, we find 

(
�̈� 
0

) = (
−𝜑2̇́ −�̈�

�̈� −𝜑2̇́
) (

−𝑂𝐴 
0

) + (
−�̇�𝐴𝐵

2́ −�̈�𝐴𝐵

�̈�𝐴𝐵 −�̇�𝐴𝐵
2́

) (
𝐴𝐵 𝐶𝑜𝑠𝛼
𝐴𝐵 𝑆𝑖𝑛𝛼

) 

Having expanded, we obtain two equations with two unknowns �̈� and �̈�𝐴𝐵 

�̈� = 𝑂𝐴𝜑2̇ − 𝐴𝐵 𝐶𝑜𝑠𝛼 �̇�𝐴𝐵
2 − 𝐴𝐵 𝑆𝑖𝑛𝛼 �̈�𝐴𝐵 

0 = −𝑂𝐴�̈� + 𝐴𝐵 𝐶𝑜𝑠𝛼 �̈�𝐴𝐵 − 𝐴𝐵 𝑆𝑖𝑛𝛼 �̇�𝐴𝐵
2
 

Thus 

�̈�𝐴𝐵 =
1

𝐴𝐵 𝑆𝑖𝑛𝛼
(𝑂𝐴𝜑2̇ − �̈� − 𝐴𝐵 𝐶𝑜𝑠𝛼 �̇�𝐴𝐵

2) = 

=
1

0,87
(0,25 − 0,26 −   0,5) = −0,58 𝑐−2 

�̈� =
1

𝑂𝐴
(𝐴𝐵 𝐶𝑜𝑠𝛼 �̈�𝐴𝐵 − 𝐴𝐵 𝑆𝑖𝑛𝛼 �̇�𝐴𝐵

2) = 

= −0,29 − 0,87 = −1,16 𝑐−2 

The result coincided with the vector method. 

 

Interactive excel problems 

on the kinematics of a plane mechanism 

At each step of the solution, the incorrectly filled cell is colored pink, which allows the 

student to independently find the error. 

The problems and an example of its solution can be downloaded from the link 

https://disk.yandex.ru/d/-VD2F0MKgSd31A 

 

 

 

https://disk.yandex.ru/d/-VD2F0MKgSd31A
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Resultant rotation of rigid body 

 

Theorem on composition of body angular velocities 

Let the body rotate with angular velocity r relative to moving coordinate system x y 

z, which in turn rotates with angular velocity е relative to conventionally fixed coordinate 

system X Y Z (Fig. 1). 

Consider a body vector а.  Observer О1 in the mobile 

system will write the formula Eulerian for relative 

derivative of the vector а. 
𝑑𝑟𝒂

𝑑𝑡
= 𝝎𝒓 × 𝒂     (1) 

The observer O in the motionless system Euler's 

formula will write the formula Eulerian for absolute 

derivative of the vector а. 
𝑑𝒂

𝑑𝑡
= 𝝎𝒂 × 𝒂     (2) 

As we know, both derivatives are related by 
𝑑𝒂

𝑑𝑡
=

𝑑𝑟𝒂

𝑑𝑡
+ 𝝎𝒆 × 𝒂      (3) 

Thus,  

𝝎𝒂 × 𝒂 = 𝝎𝒆 × 𝒂 + 𝝎𝒓 × 𝒂    (4) 

Since 𝒂 is an arbitrary body vector, then it follows from (4) the theorem of angular speeds 

composition: 

𝝎𝒂 = 𝝎𝒆 + 𝝎𝒓               (5) 

 

Generalisation.  If we consider a sequence of N moving coordinate systems, the formula (5) 

can be summarized: 

𝝎𝒂 = ∑ 𝝎𝒌 +

𝑵

𝒌=𝟏

𝝎𝒓    (6) 

where 𝝎𝒌  - angular velocity of the system number 𝑘 in relation to the system number ом 

𝑘 − 1,  and 𝝎𝒓  - angular velocity of the body  in relation to the system number N. 

 

Composition of body rotations around the parallel axes.    

 Consider a mechanism consisting of a driver, rotating around a 

fixed axis z, with an angular velocity of е and the disk rotating 

relative to the driver, with an angular velocity of r.   Obviously, 

the disk makes a plane movement 

Let first investigate the case when the angle velocities have 

the same direction (Fig.2).  In this case, the absolute angular speed 

 𝝎𝒂 = 𝝎𝒆 + 𝝎𝒓         (7)  

is different from zero.  This means that there is an instantaneous 

center of velocity 𝒫, whose speed is zero at this moment: 

𝑽𝒫 = 𝟎 

The point 𝒫 is in a composite movement, so its speed is equal to 

the sum of the transitional and relative velocities 

𝑽𝒫 = 𝑽𝒫
𝒆 + 𝑽𝒫

𝒓 = 𝟎 

So,   

𝑽𝒫
𝒆 = −𝑽𝒫

𝒓  

Transitional and relative velocity are directed oppositely only at the points of the line OA.  

Among them, there is a point P for which: 

𝜔𝒆𝑂𝒫 = 𝜔𝒓𝐴𝒫 

We found the location of the instantaneous center of velocity 

ωе 
ωr 

ωa  

A O 
𝒫 

Fig.2 

Fig.1 

Fig.1 
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𝑂𝒫

𝐴𝒫
=

𝜔𝒓

𝜔𝒆
        (8) 

Thus, in this case, the body makes a plane movement in which the instantaneous 

center of velocity 𝒫 divides "internally" the distance AB back proportionally to angular 

velocities.  

Now let the directions of the spins be opposite (Fig.3).  In this case, the absolute 

angular velocity is equal by modulo to the difference 

𝜔𝑎 = 𝜔𝑟 − 𝜔𝑒           (𝜔𝑟 > 𝜔𝑒) 

First, suppose that 𝜔𝑎 ≠ 0 

Then again there is instantaneous center of velocity 𝒫.  But 

now it's outside of the segment OA, from the side of the 

greater angular velocity. Still 
𝑂𝒫

𝐴𝒫
=

𝜔𝒓

𝜔𝒆
 

The instantaneous center of velocity divides the distance OA 

also back proportionally but "externally". 

 

 

Spins couple 

Is called the case when the directions of the spins are opposite and velocity modules 

are equal     ωr = ωe 

The disk does not rotate since 

𝜔𝑎 = 0 

It executes a circular transitional motion.  Just like the cabin of the Ferris 

wheel.  The speeds of all points are equal 

𝑉 = 𝑉𝐴 = 𝜔𝑂𝐴   (9) 

to the “moment” of spin pair. 

 

 

Differential and Planetary gears. Villis method 

 Mechanism, shown in Figure 5, consisting of two wheels in gearing, which are on the 

ends of the crank OA, is called the differential if the central wheel 

rotates. 

𝜔1 ≠ 0 
and planetary if central wheel does not rotate  

𝜔1 = 0 
Let us find by Villis method the angular velocity 𝜔2 of the little 

wheel if the angular velocities  𝜔𝑂𝐴 and 𝜔1 are known. 

The Villis method consists in giving the whole mechanism 

the angular velocity −𝜔𝑂𝐴.  According to theorem of angular 

velocities composition, crank OA will stop.  The mechanism will become a common 

external gearing of two wheels with new angular velocities 

�̃�1 = 𝜔1 − 𝜔𝑂𝐴;       �̃�2 = 𝜔2 − 𝜔𝑂𝐴 
The new angular velocities are opposite in direction and in inverse proportion to the radii of 

the wheels 
�̃�2

�̃�1
= −

𝑟1

𝑟2
    (10) 

Thus 
𝜔2 − 𝜔ОА

𝜔1 − 𝜔ОА
= −

𝑟1

𝑟2
 

Or 

𝜔2 = 𝜔ОА −
𝑟1

𝑟2
(𝜔1 − 𝜔ОА) =

1

𝑟2
(𝜔ОА𝑂𝐴 − 𝜔1𝑟1)        (11) 

ωе 

ωr ωa  

A 
O P 

Fig.3 

ωОА 

ω2 

ω1 

Fig.5 

О 

А 

𝝎𝑟 

𝝎𝑒 

𝑂 𝐴 

Fig.4 
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For the planetary mechanism 
𝜔1 = 0;            𝑂𝐴 = 𝑟1 + 𝑟2 

We get the obvious result 

𝜔2 = 𝜔ОА

ОА

𝑟2
 

It is not much harder to find the same result with the plane motion formulas: 

𝑉𝐴 = 𝜔ОА𝑂𝐴;     𝑉𝐵 = 𝜔1𝑟1;       𝜔2 =
1

𝑟2

(𝑉𝐴 − 𝑉𝐵) =
1

𝑟2

(𝜔ОА𝑂𝐴 − 𝜔1𝑟1) 

 

 

Spherical motion of the body 

 

Euler Angles.  The law of motion. 

 Spherical is called the motion of the body in which one point of the body is fixed.  

The name reflects the fact that at this motion all points of the body move on spheres.  The 

full name of this motion is rotation around a fixed point.  

      We will show that the position of the 

body, can be specified by three angular 

coordinates.   In classical mechanics most 

often, we use Euler angles: angles of 

precession , nutation θ and rotation  

(Fig. 6).   

        To do so we will build the body 

position in the space using the given 

Euler angles values.  In other words, we 

will superpose axis (x y z) with axes (x ', 

y ', z ') by three successive turns.           

        First, we turn (x y z) around the z-axis at the angle of  to axis (x1 y1z) (y1 not shown 

on Fig. 6).  The axis x1 is called the line of nodes.    Next, we turn (x1 y1z) around the x1 -

axis at the angle θ to axes (x1 y2 z ‘) (y2 not shown).         

 The third and the last rotation we make around the axis z '.   The axis (x1 y2 z ') 

superpose with axes (x ', y ', z '): 

We have shown that the Euler angles determine the position of the body.   Thus, the 

three functions  

(𝑡), 𝜃(𝑡), (𝑡) 

are the law of spherical body motion.   Therefore, we say that such body has 3 degrees of 

freedom. 

Angular velocity and acceleration of the body 

 Let us find the angular velocity of the body, using the theorem of angular velocities 

composition. It can be used since Euler angles specify the position of each of the coordinate 

systems relative to the previous coordinate system. 

 Body undergoes three rotations with angular velocities: ̇ 𝒌 around the z-axis, 

̇ 𝒊𝟏 around the axis x1 and ̇ 𝒌’  around the z’- axis.  According to theorem of angular 

velocities composition:  

𝝎 = ̇ 𝒌 + ̇ 𝒊𝟏 + ̇ 𝒌’   (12) 
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Projecting this expression of the fixed axis, we find: 

𝜔𝑥 = ̇𝐶𝑜𝑠 + ̇𝑆𝑖𝑛𝑆𝑖𝑛;    

𝜔𝑦 = ̇𝑆𝑖𝑛 − ̇𝐶𝑜𝑠𝑆𝑖𝑛;   

  𝜔𝑧 = ̇ + ̇𝐶𝑜𝑠;    (12) 

 Unlike the rotary motion of the body, where the 

angular velocity vector is all the time directed along the fixed 

axis, here vector 𝝎 changes module, and direction.  Therefore, 

the angular acceleration vector  

𝜺 =
𝑑𝝎

𝑑𝑡
     (13) 

directed tangential to the vector hodograph has different direction than 𝝎. 

 

Velocity and acceleration of the body point 

Let us choose the fixed point O as a pole.  Then the velocity of an arbitrary point М 

of the body can be found using the formula 

𝑽 =
𝑑𝒓

𝑑𝑡
= 𝝎 × 𝒓    (14) 

It follows that the velocity is distributed in the body as if the body is rotating around the 

instantaneous axis of S (Fig. 7).   This means that the velocities of the points on the axis S 

are equal to zero.   Modulo of velocity  

𝑉 = 𝜔ℎ 

Acceleration of an arbitrary point М 

𝑾 = 𝜺 × 𝒓 + 𝝎 × (𝝎 × 𝒓)    (15) 

consists of rotational and centripetal components: 

𝑾 = 𝑾вр + 𝑾ос;         𝑾вр = 𝜺 × 𝒓;        𝑾ос = 𝝎 × (𝝎 × 𝒓)    (16) 

It will be shown that in spherical motion 𝑾вр and  𝑾ос are not mutually 

perpendicular.  Centripetal acceleration 𝑾ос is directed to the instantaneous axis of rotation, 

and 𝑾вр is perpendicular to the plane (ε r). 

To vector formulas correspond the matrix expressions of speed and acceleration, 

with which it is easy to calculate them at any moment of time. 

𝑉 =  𝛺 𝑟;            𝑊 =  (𝜀 + 𝛺2)𝑟    (17)  
Example 

The movable cone rotates on the still cone without slipping.   Set: angle 𝛼, length OA 

and speed VC of the point C. 

Determine the velocity and acceleration of the top point A of the rolling cone. 

Due to the lack of slip, velocity of the points on the line S 

of contact are zero now.  It is the instantaneous axis and vector of 

angular velocity ω is directed along it. 

𝑉𝑐 = 𝜔𝐶𝐵 = 𝜔𝑂𝐴𝑆𝑖𝑛𝛼𝐶𝑜𝑠𝛼   (18) 

So 

𝜔 =
2𝑉𝑐

𝑂𝐴𝑆𝑖𝑛2𝛼
;     𝑉𝐴 = 𝜔𝐴𝐾 = 2𝑉𝑐       (19) 

Centripetal acceleration 𝑾𝑜𝑐of the point А is directed to S: 

𝑊𝑜𝑐 = 𝜔2𝐴𝐾 =
4𝑉𝑐

2

𝑂𝐴𝑆𝑖𝑛 2𝛼
       (20) 

Constant by module angular velocity ω rotates together 

with the instantaneous axis S around the vertical axis z.  Speed of 

rotation is equal to 

 𝜔𝑒 =
𝑉𝑐

𝑂𝐶
=

𝑉𝑐

𝐴𝐶𝐶𝑜𝑠𝛼
         (21) 
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
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Angular acceleration ε is tangential to the hodograph of vector ω so parallel to 𝑽𝑐. Thus, in 

spherical motion angular acceleration and velocity are not collinear.  Find ε with Euler 

formula: 

𝜺 = 𝝎𝒆 × 𝝎        (22) 

Thus 

𝜀 = 𝜔𝑒𝜔𝐶𝑜𝑠𝛼 =
2𝑉𝑐

2

𝑂𝐴2𝑆𝑖𝑛 2𝛼
         (23) 

Rotational acceleration 𝑾вр of the point A is directed as the cross product 

𝑾вр = 𝜺 × 𝑶𝑨          (24) 

perpendicular to OA in the xz plane. 

𝑊вр = 𝜀𝑂𝐴 =
2𝑉𝑐

2

𝑂𝐴𝑆𝑖𝑛2𝛼
        (24) 

We see that in spherical motion rotational and centripetal accelerations are not 

perpendicular. 

Finally 

𝑊2 = 𝑊вр2 + 𝑊ос2 − 2𝑊вр𝑊ос𝐶𝑜𝑠2𝛼       (25 

 

 

 

Free movement of body 

 

Velocity and acceleration of body point 

Consider a free body moving relative to the frame of reference with axes X, Y, Z 

(Fig. 12).  Body movement is set, if we know the method of determining its position at any 

time t.  It is enough to set the motion of the pole and 

rotation of the body around the pole.  As will know, the 

rotation can be set by three Euler angles 

𝜓(𝑡), Θ(𝑡), 𝜑(𝑡)..  Thus, six functions 

𝑋𝐴(𝑡), 𝑌𝐴(𝑡), 𝑍𝐴(𝑡)                    (12) 
𝜓(𝑡), Θ(𝑡), 𝜑(𝑡)                           

represent the law of free movement of a rigid body.  

This means that the body has 6 degrees of freedom 

Note that the first three functions give us the 

velocity  𝑽𝑨   and acceleration 𝑾𝑨  of the pole.  The 

Euler angles, let find the angular velocity  and angular acceleration  𝜺 of the body. 

Velocity of arbitrary point of the body can be found with the velocity distribution 

theorem. 

𝑽 = 𝑽𝑨 + 𝝎 × 𝝆 

Differentiating theorem, we find 

�̇� = �̇�𝑨 + �̇� × 𝝆 + 𝝎 × �̇� 

Bearing in mind that 

�̇� = 𝜺       
is angular acceleration of the body, and for body vector 𝝆 by Euler's formula 

        �̇� = 𝝎 × 𝝆 

we get the formula of acceleration for the arbitrary point of the body, 

𝑾 = 𝑾𝑨 + 𝜺 × 𝝆 + 𝝎 × (𝝎 × 𝝆) 

We have already met the last two terms in the plane movement.   As there, let's call them 

rotational and centripetal accelerations at its spinning around the pole. 

𝑾 = 𝑾𝑨 + 𝑾𝑴𝑨
вр

 + 𝑾𝑴𝑨
ос  
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Resultant motion of particle 

 

Absolute, relative and translational motions 

We know that the laws of Mechanics are only performed in inertial reference system. 

So, as we know, can be considered a heliocentric system.  Let's call this system the absolute 

and associate it with X, Y, Z.  Movement of the particle M relative to the absolute system is 

described by radius vector r (t) and is called absolute. Will mark the speed and acceleration 

of the particle in absolute motion with "a" index: 

𝑽𝒂 ,   𝑾𝒂  

Sometimes it is more convenient to describe the particle motion in relation to the 

carrying body, on which moves the particle (Fig.1).   For example, the motion of the car is 

more naturally described in relation to Earth, and not to the Sun. 
Likewise, we describe the movement of the 

passenger in relation to the tram (to the body) and not 

to the ground.   Movement in relation to the carrying 

body is called relative. We will mark speed and 

acceleration of relative motion with "r" index:  
𝑽𝒓 ,   𝑾𝒓 

Associate with the carrying body axes x, y, z.  

Relative motion is set by projections of relative radius-

vector  (𝑡)  on the axis 

𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) 
Let the movement of the carrying body in 

relation to the "absolute" system of reference be specified by coordinates of the pole 

and by Euler angles: 

𝑋𝐴(𝑡), 𝑌𝐴(𝑡), 𝑍𝐴(𝑡) 
𝜓(𝑡), Θ(𝑡), 𝜑(𝑡)     

These laws define the speed and acceleration of the pole 𝑽𝑨 ,   𝑾𝑨 and angular speed 

  and acceleration    of the carrying a body. 

We call translational speed and acceleration  

𝑽𝒆 ,   𝑾𝒆 

of the particle M the speed and acceleration of that particle of the carrying body, with which 

coincides at the given moment the particle M.  In other words, the speed and acceleration of 

the particle M, fixed on the carrying body.   

Let us find the absolute speed and acceleration of the particle M with the help of the 

given characteristics of translation and relative movements. 

𝑽𝒂 , 𝑾𝒂  (𝑽𝑨 , 𝑾𝑨 , , , )                  (1) 

 

Absolute and relative derivatives relationship 

 From Fig.1 we have  

𝒓 = 𝒓𝑨 + 𝝆               (2)  

Fig.1 and formula (2) are the same as for the free body movement, but with one 

crucial difference.  Here the vector  is not a body vector.  Its module is changing, because 

the particle M moves in relation to the body.  For this reason, we cannot apply Euler's 

formula to the vector ρ.   

Representing vector ρ in the moving reference system with the relative motion law: 

𝝆 =  𝑥 𝒊 +  𝑦 𝒋 +  𝑧 𝒌           (3) 

Here i, j, k- unit vectors of the moving system, rotating with the body.     

Differentiating (2) in time, we find 

𝑽𝒂 = 𝑽𝑨 + �̇�                      (4) 

Differentiating (3) in time, we find:  

  

A   

X   

Z   

Y   

M   

r A   
  

r   
 

 
  

Fig.1   
x 

y 

z 
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�̇� ≡
𝑑𝝆

𝑑𝑡
= �̇�𝒊 + �̇�𝒋 + �̇�𝒌 + 𝑥 

𝑑𝒊

𝑑𝑡
 +  𝑦 

𝑑𝒋

𝑑𝑡
+  𝑧

𝑑𝒌

𝑑𝑡
 

Basis vectors i, j, k are the body vectors, so their derivatives we find with Euler formulas 
𝑑𝒊

𝑑𝑡
= 𝝎 × 𝒊;       

𝑑𝒋

𝑑𝑡
= 𝝎 × 𝒋;       

𝑑𝒌

𝑑𝑡
= 𝝎 × 𝒌                 (5)   

Thus, 
𝑑𝝆

𝑑𝑡
=

𝑑𝑟𝝆

𝑑𝑡
+ 𝝎 × 𝝆                    (6) 

Here we design the relative derivative 
𝑑𝑟𝝆

𝑑𝑡
= �̇�𝒊 + �̇�𝒋 + �̇�𝒌          (7) 

It describes the change of vector  in relation to the carrying body. 

Formula (6) expressed the theorem of derivatives: absolute derivative of the vector 

specified in the mobile system, equals relative derivative plus the cross product of angular 

velocity by vector. 

Note that at translation motion of the carrying body ( = 0) derivatives are similar. 
𝑑𝝆

𝑑𝑡
=

𝑑𝑟𝝆

𝑑𝑡
      при    𝝎 = 𝟎 

Velocities composition theorem. 

Formula (4) takes the form 

𝑽𝒂 = 𝑽𝑨 + 𝝎 × 𝝆 +
𝑑𝑟𝝆

𝑑𝑡
                  (8) 

In mobile system, the column of relative derivative projections has a simple form 

𝑑𝑟𝝆

𝑑𝑡
     →    �̇� = (

�̇�
�̇�
�̇�

)  

Therefore, the matrix form of formula (8) in the moving axes 

𝑉𝑎 = 𝑉𝐴 + Ω𝜌 + �̇�                (9)   

If we fix the particle on the body at the given moment, then  
𝑑𝑟𝝆

𝑑𝑡
= 0 

absolute speed, by definition, becomes the speed of translation. 

𝑽𝒆 = 𝑽𝑨 + 𝝎 × 𝝆  (10) 

 

Let us find the relative speed by fixing the body (𝑽𝑨 = 𝟎;    𝝎 = 𝟎) 

𝑽𝒓 =
𝑑𝑟𝝆

𝑑𝑡
           (11) 

Thus, we come to the theorem of velocities composition in vector form 

𝑽𝒂 = 𝑽𝒆 + 𝑽𝒓                     (12)  

Absolute speed is equal to the sum of translational and relative speeds. 

  

Example  

The disc rotates evenly around the z-axis with angular velocity 𝜔 =  2𝑐−1. 

The particle M moves along the disc radius 

according to the law 

𝑦 =  3𝑡2  − 2𝑡  (м).  
Find the absolute speed of the particle at moment 

of time t1=1 s.    First, let's solve a problem by method of 

stopping.  Method consists in examining the relative 

motion by stopping translation mentally, and vice versa. 

This is consistent with the definitions of these movements. 

 Relative motion (ω = 0) 

Fig.2 



29 

 

We mentally stop the disk rotation and find the projection of the relative velocity of the 

moving axis y, deriving the law of relative movement: 

 𝑉𝑟𝑦 = �̇� = (6𝑡 − 2)|𝑡=1 = 4 м/сек  

Translational motion (y=Const) 

Fixing the particle M at distance ОМ = 𝑦|𝑡=1 = 1м, we find its speed in rotation 

𝑉𝑒 = 𝜔𝑂𝑀 = 2м/сек 
    

Theorem of speed composition 

𝑽𝒂 = 𝑽𝒆 + 𝑽𝒓   
in projections on the moving axis gives 

𝑉𝑎𝑥 = −𝑉𝑒 =  − 2
м

с
,             𝑉𝑎𝑦 = 𝑉𝒓 =  4м/с,            𝑉𝑎𝑧 = 0  

 Let us find the absolute velocity by matrix method. 

𝑉𝐴 = 0;    Ω = 𝜔 (
0 −1 0
1 0 0
0 0 0

) ;        𝜌 = (
0
𝑦
0

) ;     �̇� = (
0
�̇�
0

)  

Find the projections of absolute velocity of the moving axis: 

(

𝑉𝑎𝑥

𝑉𝑎𝑦

𝑉𝑎𝑧

) = Ω𝜌 + �̇� = 2 (
0 −1 0
1 0 0
0 0 0

) (
0

3𝑡2 − 2𝑡
0

) + (
0

6𝑡 − 2
0

) = (
−2
4
0

) м/с          (13) 

We see that the results are the same with the stopping method. 

 

 

Acceleration composition theorem 

Differentiating the velocity composition theorem in vector form (10), we find  

 𝑾𝒂 = 𝑾𝑨 + 𝜺 × 𝝆 + 𝝎 × �̇� + �̇�𝒓          (14)      
Vectors  and Vr are set in mobile system, so their absolute derivatives are given by the 

derivatives theorem 

�̇� = 𝝎 × 𝝆 +
𝑑𝑟𝝆

𝑑𝑡
= 𝝎 × 𝝆 + 𝑽𝒓       (15) 

𝝎 × �̇� = 𝝎 × 𝑽𝒓 + 𝝎 × (𝝎 × 𝝆);       �̇�𝒓 = 𝝎 × 𝑽𝒓 +
𝑑𝑟𝑽𝒓

𝑑𝑡
 

It is remarkable that in these both expressions the component  𝝎 × 𝑽𝒓 is derived 

from two different formulas: 𝝎 × �̇�  and  �̇�𝒓.   In the first case, the product of 𝝎 × 𝑽𝒓 

characterizes the change of the transitional speed 𝝎 × 𝝆 due to changes in the relative 

position of the particle. 

In the second case, the product of  𝝎 × 𝑽𝒓 characterize the change of direction of the 

vector of relative speed of  𝑽𝒓  by turning carrying body with an angular velocity 𝝎.   

Thus, two products 𝝎 × 𝑽𝒓  characterize the mutual influence of relative motion on 

rotary transitional speed and of transition rotation on the relative speed.  It is amazing what 

these effects are identical! 

 We get 

𝑾𝒂 = 𝑾𝑨 + 𝜺 × 𝝆 + 𝝎 × (𝝎 × 𝝆 + 𝑽𝒓) + 𝝎 × 𝑽𝒓 +
𝑑𝑟𝑽𝒓

𝑑𝑡
        

Combining the similar terms, we find  

𝑾𝒂 = 𝑾𝑨 + 𝜺 × 𝝆 + 𝝎 × (𝝎 × 𝝆) + 2(𝝎 × 𝑽𝒓) +
𝑑𝑟𝑽𝒓

𝑑𝑡
            (16)      

It is better to write the matrix form of formula (16) in the mobile reference system in 

which the last component looks most simple: 

𝑊𝑎 = 𝑊𝐴 + (ℰ + Ω2)ρ + 2Ωρ̇ + ρ̈  (17) 

To find the transitional acceleration, we fix, by definition, the particle on the carrying 

body.   Then 𝑽𝒓. 𝑾𝒓 = 𝟎 and absolute acceleration becomes the transitional one by 

definition. 
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𝑾𝒆 = 𝑾𝑨 + 𝜺 × 𝝆 + 𝝎 × (𝝎 × 𝝆)     (18) 

We see that formula (18) is the same as the formula for the acceleration of the body 

particle, as it should be by definition.  Stopping the carrying body (𝑾𝑨, 𝝎, 𝜺 =  0), we find 

the relative acceleration 

𝑾𝒓 =
𝑑𝑟𝑽𝒓

𝑑𝑡
            (19)        

Component 

𝑾𝒄 = 2(𝝎 × 𝑽𝒓)  (20) 

is called additional or Coriolis acceleration 

We come to Coriolis theorem 

𝑾𝒂 = 𝑾𝒆 + 𝑾𝒓 + 𝑾𝒄                   (21) 
We see that unlike the speeds, the sum of transitional and relative accelerations does 

not give, in general, the absolute acceleration.   That is why Coriolis acceleration is called 

additional.  

This acceleration is named after the French scientist Gustave Gaspard Coriolis, who 

described it for the first time in 1833 (by Gauss in 1803, and by Euler in 1765 year (!)). 

The necessity of Coriolis acceleration is evident from the following simple example. 

Platform of radius R rotates evenly with angular velocity ω (Fig. 3).  The man runs on the 

edge of the platform against the rotation with relative speed 

𝑉𝑟 =  𝑅, 
Thus, in relation to the Earth the man is motionless, and its 

absolute acceleration is zero.  However, the sum of transition and 

relative accelerations is not zero. 

Really, the relative acceleration 𝑾𝒓  being a normal 

acceleration of the particle, is directed toward the center of the 

platform and is equal to: 

𝑊𝑟 =
𝑉𝑟

2

𝑅
= 𝜔2𝑅 

Transitional acceleration of the particle, being centripetal acceleration particle is also 

directed toward the center of the platform and is equal to the relative acceleration 

𝑊𝑒 = 𝜔2𝑅 = 𝑊𝑟 

The sum of accelerations 

𝑾𝒆 + 𝑾𝒓 

is directed to the center and is not equal to zero.   

𝑊𝑒 + 𝑊𝑟 = 2𝜔2𝑅  

Only the Coriolis acceleration 𝑾С ensures the absence of absolute acceleration.   

Vector of angular velocity 𝝎  is into the drawing, so 𝑾С is directed from the center and by 

modulo it equals 

𝑊𝑐 = 2𝜔𝑉𝑟 = 2𝜔2𝑅 

Now, according to acceleration theorem absolute acceleration 𝑾𝒂 becomes zero.  In 

projections on the radius: 

𝑊𝑎 = 𝑊𝑐 − 𝑊𝑒 − 𝑊𝑟 = 0 

 

Coriolis acceleration 

𝑾𝒄 = 2(𝝎 × 𝑽𝒓)                 (22) 

It is directed according to the rule of the right screw and is zero in three cases 

𝑾𝒄 = 𝟎: 
1. Carrying body in translation or reverses the direction of rotation (𝝎 = 𝟎)  

2. Relative velocity 𝑽𝒓 is parallel to the angular velocity of the body    So 𝑾𝒄 = 𝟎 

when driving along the meridian at the intersection of the Earth's equator.   

3. Particle stopped on the carrying body (𝑽𝒓 = 𝟎) 

 

Fig.3 
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On this basis, we conclude that Coriolis acceleration describes: 

1. The change of the transitional speed 𝝎 × 𝝆 due to changes in the relative 

position of the particle. 

2. The change of direction of the vector of relative speed of  𝑽𝒓  by turning 

carrying body with an angular velocity 𝝎.   

 

Example of solving a problem using vector and matrix methods  

 

Let's take the same example as in for theorem of velocities composition  

 = 2c-1.   y = 3t2 -2t (м). 

 

First, we use the stopping method (Fig. 4) 

 

Relative motion  (ω = 0)    

𝑊𝒓𝒙 = �̈� = 6 м/с2 

Translational motion (𝑽𝒓 = 𝟎)  

𝑊𝑒 = 𝜔2𝑥|𝑡=1 = 4 м/с2 

Coriolis acceleration 

𝑊с = 2𝜔𝑉𝒓 = 16 м/с2 

Coriolis's theorem in projections on rotating axis 

 

𝑊𝑎𝑥 = −𝑊с = −16м/с2;                 𝑊𝑎𝑦 = 𝑊𝑟 − 𝑊𝑒 = 2 м/с2;       𝑊𝑧 = 0 

 

The same result we get by matrix method.  

𝑊𝑎 = 𝑊𝐴 + (ℰ + Ω2)ρ + ρ̈ + 2Ωρ̇ 

In moving axis:   

𝑊𝐴 = 0;        ℰ = Ω̇ = 0 

Ω2 = −ω2 (
1 0 0
0 1 0
0 0 0

) ;     𝜌 = (
0
𝑦
0

) ;     �̇� = (
0
�̇�
0

) ;    �̈� = (
0
�̈�
0

) 

𝑊𝑎 = (Ω2)ρ + ρ̈ + 2Ωρ̇ 

(

𝑊𝑎𝑥

𝑊𝑎𝑦

𝑊𝑎𝑧

) = −ω2 (
1 0 0
0 1 0
0 0 0

) (
0

3t2 − 2t
0

) + 2ω (
0 −1 0
1 0 0
0 0 0

) (
0

6t − 2
0

) + (
0
6
0

)

t=1

= (
−16

2
0

) м/с2 

  

We see that the results are the same. 

Advantage of matrix method is the possibility to get the result for any moment of time 

without drawing vectors. 

 

 

Interactive excel problems 

on kinematics of resultant motion of particle 

At each step of the solution, the incorrectly filled cell is colored pink, which allows 

the student to independently find the error. 

The problems and an example of its solution can be downloaded from the link 

https://disk.yandex.ru/d/KUS3FkBiatmT_A 
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