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DYNAMICS OF THE PARTICLE 

 

       Dynamics is the main branch of mechanics.   In this section, the laws of motion of a rigid 

body under the influence of applied forces are studied.  The simplest object of dynamics is a 

material particle, i.e., a body whose dimensions can be neglected in comparison with the length 

of its trajectory.   For example, the planet Earth can be taken as a material particle if we consider 

its motion around the Sun. 

 

Returning once more to the principles of mechanics. 

In statics we have already formulated the Principles of Mechanics.  Now let's consider their 

interpretation and consequences for the dynamics. 

1. Galileo's principle of inertia (Newton's first law). 

There exists a reference system in which an isolated material particle maintains rest or 

uniform rectilinear motion (by inertia). 

 An isolated particle is a particle that does not interact with other particles.  Obviously, the 

concept of an isolated particle is an abstraction, it is impossible to find such a particle.   

However, this fundamental concept allowed Galileo to understand that the action of forces is not 

required for motion by inertia.  After all, before him, people believed that to move you need to 

apply force (the cart needs to be pushed), forgetting about the forces of resistance. 

 There is no experimental evidence for the existence of inertial frames of reference. 

Obviously, this concept is also an abstraction.     However, systems have been found that are very 

close to inertial systems.  The heliocentric frame of reference can be considered the "most" 

inertial frame of reference.  Its center is in the Sun, and its axes are directed to distant stars.    

It will be shown that the reference frame associated with the Earth is not inertial.   However, 

the error in the implementation of Newton's laws on Earth is small.    
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2. Basic principle (Newton's second law). 

Acceleration of a material particle is proportional to the applied   

force and inversely proportional to the mass of the particle 

𝑾 =
1

𝑚
𝑭      

Here 𝑚 is the mass of the particle, a scalar constant.   

The principle makes it possible to distinguish an inertial system from a non-inertial one.  

The motorcyclist feels a force that accelerates him in relation to a standing person. A person does 

not feel any force from acceleration in relation to a motorcyclist.  The reason is that the frame of 

reference associated with a standing person is inertial, while the motorcyclist's system is not.  In 

other words, the acceleration of a motorcyclist is caused by a force acting on the wheel, and the 

acceleration of a standing person is not caused by a force, but only by the acceleration of a 

motorcyclist. 

 Corollary 1: Impossible to create force without resistance, namely, the mass, which expresses 

the ability of a particle to resist a change in its velocity.  

Corollary 2: For a given mass, the force is determined by acceleration. With a small mass of a 

particle, the magnitude of the force is limited by the ability to create a large acceleration of the 

particle. It is impossible to apply a large force to a fluff, since this would require the creation of a 

very large acceleration.  If you hit a pillow lying on the scales with a stick, the arrow will swing 

less than when striking without a pillow.  The reason is acceleration.  The pillow reduces the 

acceleration of the stick (a large path of deformation of the pillow), which means that it reduces 

the force of impact for a given weight of the stick. 

  This is the only quantitative law of mechanics.   It connects the three magnitudes m, W, 

and F, thus expressing one of them through the other two independent ones.   Acceleration W 

with dimension [W] is always taken as an independent quantity, since it relates the basic 

quantities of length and time. 

 Depending on what is taken as the second independent quantity (m or F), Two types of 

system of mechanical units: 

1)  Systems in which the mass m of dimension [m] is taken as the second independent 

quantity.   An example is the SI system.  In it, [W] = m/sec2, [m] = kg, and the derived 

unit of force is called Newton: 

[𝐹]  =  [𝑚][𝑤]  =  Н =  к𝑔 м/𝑠ек2 

2)  Systems in which force is taken as the second independent quantity. An example is the 

Technical System. In it, [W] = m/sec2, [F] = kGf, and the derived unit of force is called 

the Technical Unit of Mass: 

[m] = [F]/[w] = TEM = kGf sec2/m 

When solving problems, it is important to perform all calculations in the same system of 

units.  Let us recall the ratio between the units of forces in the two systems.     1𝑘𝐺𝑓 = 9,8Н 

 

3. The principle of equality of action and reaction. 

Two particles interact with oppositely directed forces of the similar modulo. These forces 

are balanced only for particles of the same solid.  

4. The principle of external additivity (the rule of addition of forces) 
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 The action of the medium on the particle can be replaced by one force F, which is equal to the 

sum of the forces with which the particles of the medium act on the particle under study.  

𝑭 = ∑ 𝑭k 

 Unlike static, Forces in Dynamics can be functions of the position of a particle (its radius - 

vector r), velocity 𝑽 and the independent variable - time 𝑡. 

𝑭 = 𝑭(𝒓, 𝑽;  𝑡)                    

  Consider, for example, the forces acting on a rocket (Fig.1): the force of 

gravity 𝑷(𝒓)depends on the distance to the Earth, the thrust force of the engine 

𝑭(𝑡) is a function of time, the force of air resistance 𝑹(𝒓, 𝑽) depends on the 

velocity of the rocket and the density of the atmosphere (distance to the Earth)  

 

Differential equations of particle motion.    

Let us write down Newton's second law, taking into account that the 

acceleration of a particle is the second time derivative of the radius - vector    

𝑚𝒓̈ = ∑𝑭𝑘 (𝒓, 𝒓̇; 𝑡) (1) 

  An expression that containing the ordinary derivatives of the desired 

function of the independent variable is called an ordinary differential equation.  

The order of the higher derivative is called the order of the differential equation.   Equation (1) is 

a second-order vector differential equation.𝒓(𝑡). 

  To solve problems, equation (1) must be written in scalar form, that is, in projections on 

the coordinate axis.  Projecting (1) on the Cartesian axes, we find the differential equations of 

motion of a particle in Cartesian coordinates: 

𝑚𝑥̈ =∑𝐹𝑘𝑥 (𝑥, 𝑦, 𝑧; 𝑥̇, 𝑦̇, 𝑧̇; 𝑡) 

               𝑚𝑦̈ =∑𝐹𝑘𝑦 (𝑥, 𝑦, 𝑧; 𝑥̇, 𝑦̇, 𝑧̇; 𝑡)    (2)       

𝑚𝑧̈ =∑𝐹𝑘𝑧 (𝑥, 𝑦, 𝑧; 𝑥̇, 𝑦̇, 𝑧̇; 𝑡) 

This system of differential equations has a sixth order.  

  Equation (1) in projections on the axes τ, n, b gives three differential equations in the 

natural axes. 

𝑚𝜎̈ = ∑𝐹𝑘𝜏           
𝑚𝜎̇2

𝜌
= ∑𝐹𝑘𝑛                0 = ∑𝐹𝑘𝑏 

Here it is taken into account that the projection of acceleration on binormal b is equal to zero. 

  

Direct and inverse problems of particle dynamics 

Differential equations, for example, in Cartesian coordinates (4), allow the formulation of 

two types of problems of particle dynamics: 

1) The direct problem of particle dynamics is to determine the resultant forces applied 

to the particle according to a given law of its motion.   Suppose the law of motion of a 

particle in Cartesian coordinates is given.  

𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) 

Need to find resultant R(t). 

 F(t) 

R(r,V) 

P(r) 

Рис  1 
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The solution of this problem is associated with the differentiation of the law of motion.  

Projections and modulus of resultant forces are found according to the formulas: 

𝑅𝑥 = 𝑚𝑥̈;      𝑅𝑦 = 𝑚𝑦̈;         𝑅𝑧 = 𝑚𝑧̈ 

     𝑅 = √𝑅𝑥2 + 𝑅𝑦2 + 𝑅𝑧2 

Example of a direct problem: 

Find the reaction N of the bridge of radius 𝑅 

from the car of mass 𝑚 moving at velocity 𝑉 on the top 

of the bridge (Fig.2).   Since the trajectory of movement 

is known, we need to use the equations in the natural 

axes: 

In the projection on the normal 

𝑚𝑉2

𝑅
= 𝑚𝑔 − 𝑁 

So 

𝑁 = 𝑚(𝑔 −
𝑉2

𝑅
)             

  

2)  The inverse problem of particle dynamics is the main one and consists in determining 

the law of motion of a particle under the given forces.   

In this case, equations (2) are a system of differential equations for finding three unknown 

functions of time t  

𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) 
The solution of the inverse problem is associated with the integration of system (4) of the 

sixth order. With integration, six constants arise and the solution (the second integral of the 

equations) will be: 

𝑥 =  𝑥 (𝑡;  𝐶1 𝐶2  𝐶3 𝐶4 𝐶5 𝐶6) 

                     𝑦 =  𝑦 (𝑡;  𝐶1 𝐶2  𝐶3 𝐶4 𝐶5 𝐶6)                      

𝑧 =  𝑧 (𝑡; 𝐶1 𝐶2  𝐶3 𝐶4 𝐶5 𝐶6) 
The presence of integration constants indicates that system (4) has many solutions.  This 

means that the forces do not unambiguously determine the motion of a particle.   In other words, 

the same force causes different trajectories of the particle. 

For example, the movement of a stone under the influence of the same gravitational force 

can move along different trajectories depending on 

how it is thrown (Fig. 3).   Integration constants are 

determined from the initial conditions of motion. 

𝑡 = 0:   𝑥 = 𝑥0;    𝑦 = 𝑦0;   𝑧 = 𝑧0     

𝑥̇ = 𝑥̇0   𝑦̇ = 𝑦̇0   𝑧̇ = 𝑧̇0 

To determine the integration constants, you need 

to substitute these conditions into solution (9) and its 

derivative (the first integral of the equations) 

𝑥̇ =  𝑥̇(𝑡;  𝐶1 𝐶2  𝐶3 𝐶4 𝐶5 𝐶6) 
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𝑦̇  =  𝑦̇(𝑡;  𝐶1 𝐶2  𝐶3 𝐶4 𝐶5 𝐶6)  

                                                               𝑧̇ =  𝑧̇(𝑡;  𝐶1 𝐶2  𝐶3 𝐶4 𝐶5 𝐶6) 
It gives an algebraic system with respect to the constants C1,... C6, which has a single solution.   

 

DYNAMICS OF THE RELATIVE PARTICLE MOTION  

Basic equation of dynamics of relative particle motion  

 Newton's laws are valid only in an inertial frame of reference. Only one frame of 

reference is known, close to the inertial one.  It is a heliocentric system, the axes of which 

originate in the Sun and are directed to distant stars.  It has been experimentally established that 

the reference system associated with the Earth is not inertial.  

 A discouraging feeling arises: the only inertial frame of reference exists so far away from 

us that Newtonian mechanics is not suitable for studying the motion of bodies near the Earth. Let 

us show that there are innumerable inertial frames, and that Newton's like laws can be applied in 

non-inertial frames of reference if we know how these systems move. 

 First, let us find out how to construct the differential equations of motion of the particle 

with respect to a non-inertial frame of reference.   Let the motion of a mobile system with axes 

𝑥, 𝑦, 𝑧 with respect to an inertial system with axes 𝑋, 𝑌, 𝑍 be given by the functions of the 

coordinates of the origin A and Euler angles:  

𝑋𝐴(𝑡), 𝑌𝐴(𝑡), 𝑍𝐴(𝑡)       𝜓(𝑡), Θ(𝑡), 𝜑(𝑡)      (3) 

According to the law (3), it is possible to find velocity and acceleration  𝑽𝑨  𝑾𝑨  of the origin А , 
angular velocity , and acceleration   of a movable frame of reference.     

 In the inertial frame of reference  𝑋, 𝑌, 𝑍, observer O will write down the 

basic law of the dynamics of particle M in the form:  

𝑚𝑾𝒂 =∑𝑭𝒌       

Here 𝑭𝒌 are physical forces acting from other particles. 

 According to the Coriolis theorem:  

𝑾𝒂 = 𝑾𝒆 +𝑾𝒓 +𝑾𝒄         

The Basic Law takes the form of: 

 

𝑚(𝑾𝒆 +𝑾𝒓 +𝑾𝒄) =∑𝑭𝒌       

Or:       

𝑚𝑾𝒓 =∑𝑭𝒌 −𝑚𝑾𝒆 −𝑚𝑾𝒄                

The latter terms are called the transport and Coriolis forces of inertia , respectively: 

𝜱𝒆 ≡ −𝑚𝑾𝒆;                 𝜱𝒄 ≡ −𝑚𝑾𝒄            

𝜱𝒆 ≡ −𝑚[𝑾𝑨 + 𝜺 × 𝝆 + 𝝎 × (𝝎 × 𝝆)];            𝜱𝒄 ≡ −2𝑚(𝝎 × 𝑽𝒓)    

Expression 

𝑚𝑾𝒓 =∑𝑭𝒌 +𝜱𝒆 +𝜱𝒄             

is called the basic equation of the dynamics of the relative motion of a particle. 
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 Thus  

to construct the equation of motion of a particle with respect to a non-inertial frame of 

reference, it is necessary to add the forces of inertia 𝜱𝒆, 𝜱𝒄 to physical forces ∑𝑭𝒌 

 Inertial forces differ from physical forces in that they are not caused by the action of 

other particles, but are determined only by the movement of the mobile frame of reference.  

Therefore, it is said that the forces of inertia 𝜱𝒆, 𝜱𝒄 have kinematic character. 

 The dispute about the reality or imaginary nature of the forces of inertia 𝜱𝒆, 𝜱𝒄 seems 

to have a simple solution: they are real for the observer A of the mobile reference system and 

imaginary for the observer O of the absolute reference system. 

 For example, two observers will explain the break of the thread in different ways when 

the rotation velocity of the ball along a fixed plane increases. 

A stationary observer (Fig. 4) 

connected to a plane says: The tension 

𝑻of the thread creates an axial 

acceleration 𝑾 of the ball.  The 

thread breaks because the force of its 

tension 𝑻 reaches the limit value.   

 Movable Observer (Fig.5) 

connected to the thread says: the ball 

is stationary, and the tension force 𝑻 balances the centrifugal force of inertia 𝜱𝒆. 

 

Failure to comply with Galileo's principle. Relative rest condition 

      Consider an isolated particle in a non-inertial frame of reference.   

∑𝑭𝒌 = 𝟎 

Equation of Relative Motion of a Particle 

𝑚𝑾𝒓 = 𝜱𝒆 +𝜱𝒄 ≠ 𝟎     

shows that the isolated particle does not conserve the velocity vector 

𝑽 ≠ 𝑪𝒐𝒏𝒔𝒕      

in a non-inertial frame of reference.   

 Let the particle now be in a state of relative rest.   Then 𝜱𝒄 = 𝟎.  

Let's release the particle.  It will start moving, because 

𝑚𝑾𝒓 = 𝜱𝒆 ≠ 𝟎;              𝑽 ≠ 𝑪𝒐𝒏𝒔𝒕 = 𝟎      

Conclusion: Galileo's principle does not hold in a non-inertial frame of reference. 

 Let us stop the particle M, which is under the influence of physical forces  

∑𝑭𝒌 ≠ 𝟎 

relative to the movable frame of reference.  Then  

W 

T 

m 

Fig.4 

T 
m 

Fig.5 

Fe 
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𝑽𝒓 = 𝟎   и  𝜱𝒄 ≡ −2𝑚(𝝎 × 𝑽𝒓) = 𝟎 

For a particle to remain at rest, there must be no relative acceleration of the particle.  According 

to the basic equation of the dynamics of the relative motion of a particle 

𝑚𝑾𝒓 =∑𝑭𝒌 +𝜱𝒆 = 𝟎  

Thus, the condition for relative rest is: 

∑𝑭𝒌 +𝜱𝒆 = 𝟎     

It differs from the known rest condition of a particle in an inertial system 

∑𝑭𝒌 = 𝟎 

 

Conditions of inertiality of a mobile system. Galileo's principle of relativity 

 Let us do away with the myth about the uniqueness of the heliocentric inertial frame of 

reference.  Let us find out how the frame of reference should move in relation to the inertial 

frame of reference in order to also be inertial, i.e., so that Newton's laws are observed in it.  

Obviously, for this to happen, the following inertia forces must be absent in the mobile reference 

system:   

𝜱𝒆 ≡ −𝑚𝑾𝒆 = 𝟎;                𝜱𝒄 ≡ −𝑚𝑾𝒄 = 𝟎            

To do this, the transport and Coriolis particle accelerations must turn to zero. 

𝑾𝒆 = 𝑾𝑨 + 𝜺 × 𝝆 +𝝎 × (𝝎 × 𝝆) = 𝟎                  𝑾𝒄 = 2(𝝎 × 𝑽𝒓) = 𝟎   

Let the system move translatory, then  

𝝎 = 𝟎;        𝜺 = 𝟎 

and 

 𝜱𝒄 = 𝟎 ;          𝜱𝒆 ≡ −𝑚𝑾𝑨 ≠ 𝟎   

In order for both forces of inertia to turn to zero, it remains to demand: 

𝑾𝑨 = 𝟎 

 Thus, the condition of inertiality of a moving frame of reference is its translational, 

rectilinear and uniform motion relative to the initial inertial system.   

𝝎 ≡ 𝟎;    𝑾𝑨 = 𝟎           

 This leads to an optimistic conclusion:  

 If there is at least one inertial system, then there are countless of them, and all of them move 

translatory, in a straight line, and uniformly with respect to each other. 

 In all these inertial systems, Newton's laws hold in the same way. 

Therefore, Galileo's principle of relativity is valid: 

No mechanical experiment can distinguish one inertial system from another. 
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Proof of the non-inertial nature of a geocentric system. 

 Since the Earth rotates with respect to an inertial heliocentric frame of reference, the 

space associated with the Earth cannot be inertial. This is evidenced by many phenomena on 

Earth. 

1. The force of gravity is not equal to the force of attraction and depends on the 

latitude.  

Consider the particle of mass m , which is at rest near the Earth's surface at geocentric 

latitude φ.  It is affected by the physical force of attraction of the Earth's mass M,  

𝑭 = 𝑚𝒈𝟎;    

directed towards the center of the Earth, and obeying the law of universal gravitation 

 𝐹 = 𝛾
𝑚𝑀

𝑅2
= 𝑚𝑔0;       𝑔0 = 𝛾

𝑀

𝑅2
= 9,832 м/с² 

Here  𝑔0is the acceleration of the force of attraction.   

In a non-inertial frame of reference, a transport force of inertia 𝜱𝒆 acts on a particle at 

rest  

𝛷𝒆 = 𝑚𝜔
2𝑅𝐶𝑜𝑠𝜑 

The force of gravity is the sum of 

𝑷 = 𝑭 +𝜱𝒆 

A particle cannot remain at rest under the influence of a single force.  Let's hang the 

particle from the ceiling.   Then the particle will find the long-awaited rest under the influence of 

two forces equal in modulus and opposite in direction:𝑷 

𝑻 = −𝑷;       𝑇 = 𝑃 = 𝑚𝑔 

We see that the plumb line, like the force of gravity 𝑷, is not directed to the center of the 

Earth.  It forms an angle of ψ with the plane of the equator, called the geographical latitude. Due 

to the low angular velocity of the Earth's rotation, the maximum difference is about 4 degrees 

γ = ψ − φ   

𝑆𝑖𝑛 γ ≈ 0;      Cos γ ≈ 1       𝐶𝑜𝑠𝜓 ≈ 𝐶𝑜𝑠𝜑;         

 Let's project the equation of the relative rest of a 

particle 

𝑭 + 𝑻 +𝜱𝒆 = 𝟎 
on the direction of the plumb line 

𝑇 − 𝐹𝐶𝑜𝑠𝛾 + 𝛷𝒆𝐶𝑜𝑠𝜓 = 0;         𝑇 = 𝑚𝑔 

Otherwise 

𝑚𝑔 = 𝐹𝐶𝑜𝑠𝛾 − Фе𝐶𝑜𝑠𝜓 ≈ 𝑚𝑔0 −  𝑚𝜔2𝑅𝐶𝑜𝑠2 𝜑 
From this we find the dependence of the acceleration 

of gravity from the latitude 

𝑔(𝜑) = 𝑔0 (1 −
𝜔2

𝑔0
𝑅𝐶𝑜𝑠2𝜑)                   

We see that at the poles 𝜑 = ±
𝜋

2
  the acceleration of the force of gravity is equal to the 

acceleration of the force of attraction  

ψ φ 
P=mg 

𝑭 = 𝑚𝒈𝟎 

Фe 

T = -P 

N 

Fig.4 

R 
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𝑔 = 𝑔0 = 9,832 м/с² 

The acceleration of gravity reaches a minimum at the equator 

𝑔𝑚𝑖𝑛 = 𝑔0 (1 −
𝜔2

𝑔0
𝑅) = 9,780 м/с²  

The action of centrifugal forces of inertia eventually turned the Earth into  a geoid, flattened at 

the poles.  

 

2. Erosion of river banks 

Let a river in the northern hemisphere flow from south to north at a relative velocity 𝑽𝑟.  
Let us consider the volume of water of mass m between two river sections perpendicular to the 

riverbed.  Let us put the origin of coordinates in the mass 

m, and direct the axes: 𝑥 − to the south, 𝑦 −to the east, 

𝑧 −vertically.   

The mass m is affected by: the force of gravity 𝑷 

including the transport force of inertia 𝜱𝒆, it belongs to the 

plane 𝑥 𝑧, 

The reaction 𝑹 of the channel, the Coriolis force of inertia 

𝜱с directed to the east, opposite of the Coriolis 

acceleration 𝑾с. 

The relative acceleration 𝑾𝑟is directed towards the center of the Earth, since the mass m 

moves uniformly along the meridian. 

Equation of Relative Motion of Mass m 

𝑚𝑾𝑟 = 𝑷+ 𝑹 +𝜱с 
Let's project it on the axis of y: 

0 = 𝑅𝑦 +Фс 

Hence, 

𝑅𝑦 = −Фс < 0             

This means that the reaction 𝑹 of the bank is deflected to the West by the eastern (right) bank of 

the river.   The pressure of the river of the same module erodes the right bank.  If the river flows 

to the south, then the western (also right) bank is eroded.  So, all rivers in the northern 

hemisphere are eroding their right banks. For the same reason, in the northern hemisphere, the 

right rails of railways wear out more. 

In the southern hemisphere, the left banks of rivers are eroded and the left rails wear out 

more. 

Thus, when a particle in the northern hemisphere moves, it always bends to the right. If 

this deviation is hindered by constraints (banks, rails), then the constraints experience additional 

pressure.  If there are no constraints, then the motion acquires a specific character, which 

depends on the direction of the relative velocity. 

For example, all ocean currents in the northern hemisphere move clockwise.  In the 

southern hemisphere, the currents are counterclockwise. 

 In phenomena such as a whirlpool of water and an atmospheric cyclone, the particles 

move radially to the center of the whirlpool or cyclone, where the area of low pressure is located.   
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In the northern hemisphere, the radial relative velocity of particles causes them to deflect 

to the right, forming cyclones that rotate counterclockwise.  In the southern hemisphere, 

cyclones rotate clockwise. 

 The direction of rotation of cyclones is easy to remember if you understand that they 

rotate in the direction of the Earth's rotation, as we see it from our pole: North, or South. 

 A terrible earthquake off the coast of Japan on 11.03.2011 caused a tsunami and a 

whirlpool that rotated counterclockwise. 

3.Falling particle deviation 

Consider a material particle falling from a height h to the earth from the state of 

 relative rest.  Let's suppose, for simplicity, it happens at the equator. Equation of Relative 

Motion: 

𝑚𝑾𝑟 = 𝑚𝒈 +𝜱с;                   𝜱с = −2𝑚𝝎𝘹𝑽𝒓           

Force of gravity 𝑚𝒈 includes the transport force of inertia 

𝜱𝒆. 

The Coriolis acceleration 2𝝎𝘹𝑽𝒓 is directed westward 

(against the y-axis).  

Projecting the equation on the moving axes: 𝑥 −south, 

𝑦 −east, 𝑧 −vertical   

𝑥̈ = −2(𝜔𝑦𝑧̇ − 𝜔𝑧𝑦̇);     𝑦̈ = −2(𝜔𝑧𝑥̇ − 𝜔𝑥𝑧̇)       

𝑧̈ = −𝑔 − 2(𝜔𝑥𝑦̇ − 𝜔𝑦𝑥̇) 

Taking into account the fact that 𝜔𝑥 = −𝜔;    𝜔𝑦 = 𝜔𝑧 = 0, we find 

𝑥̈ = 0;    𝑦̈ = −2𝜔𝑧̇;     𝑧̈ = −𝑔 + 2𝜔𝑦̇ 

As the Earth rotates slowly  

𝜔 < 0,0001 𝑐−1 

then it can be considered that  

𝑧̈ ≈ −𝑔;                    𝑧 = ℎ − 𝑔𝑡2/2 

At the moment of falling T:         

𝑧 = 0;                     𝑇 = √
2ℎ

𝑔
 

Integrating the equation on y, we get: 

𝑦̇ = −2𝜔𝑧 + С     

From the initial conditions 

С = 2𝜔ℎ        

And now 

𝑦̇ = −2𝜔(𝑧 − ℎ) = 𝜔𝑔𝑡2 

𝑦 = 𝜔
𝑔𝑡3

3
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At the moment of falling, the deviation of the particle to the east reaches the value of 

𝑦(𝑇) =
𝜔𝑔

3
(
2ℎ

𝑔
)

3
2
 

 

 

GENERAL THEOREMS OF SYSTEM DYNAMICS 

Material system.  Center of Mass and Center of Gravity.  

 Let us name Material system the set of interacting material particles 𝑚1, 𝑚2, … .𝑚𝑘 … 𝑚𝑛. 

Example: solar system.  

A system of material particles, the interaction of which can be 

neglected in comparison with the interaction with the external 

environment, is not material. Example: a group of airplanes. 

The mass of a system is an arithmetic quantity equal to the sum 

of the masses of the particles of the system 

𝑀 = ∑𝑚𝑘       

The motion of the particles is considered in relation to the inertial frame of reference. A 

reference system is a three-dimensional space with which an observer who is able to measure 

distances and time is connected.  The boundaries of the system are determined by the observer.  

A frame of reference is inertial if it holds Newton's laws.  

The center of mass of the system is called the geometric point C, the radius-vector of 

which is equal to 

𝒓𝑐 =
1

𝑀
∑𝑚𝑘𝒓𝑘                  

Its coordinates in Cartesian axes 

𝑥𝑐 =
1

𝑀
∑𝑚𝑘𝑥𝑘 ;      𝑦𝑐 =

1

𝑀
∑𝑚𝑘𝑥𝑘 ;      𝑧𝑐 =

1

𝑀
∑𝑚𝑘𝑥𝑘 ;          

 

A rigid body is a system of an infinite but countable number of mass particles, the 

distances between which are invariable in time.  The elementary particle of the body of volume 

dV has a mass dm = γ(r)dV, where γ(r) is the density of the body depending on the radius-vector 

of the particle.  A body is said to be homogeneous if the γ is independent of r.   

The volume of a body is an integral in volume 

 𝑉 =∭𝑑𝑉             

Body mass 

  𝑀 =∭𝛾(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧           

The center of mass of a body is determined by a vector 

   𝒓𝑐 =
1

𝑀
∭𝒓𝛾(𝑟)𝑑𝑥𝑑𝑦𝑑𝑧                

For a homogeneous body 

𝑀 =  𝛾𝑉  and  𝒓𝑐 =
1

𝑉
∭𝒓𝑑𝑥𝑑𝑦𝑑𝑧               

The gravitational field is determined by the gravitational acceleration vector g (r).  

𝑑𝑷 =  𝒈 (𝒓)𝑑𝑚 =  𝒈 (𝒓) 𝛾(𝑟) 𝑑𝑉 

The weight of the body is a vector 

 𝑷 =∭d𝐏                     

mk 

mk+1 

rc 
C 

rk+

1 

rk 

Fi 
Fi’ 

m1 

mn 

m2 
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For a homogeneous body 

𝑑𝑷 =  𝛾 𝒈 (𝒓)𝑑𝑉 

For small bodies near the Earth, the accelerations of gravitation can be considered parallel and 

dependent on the z coordinate of the vertical  

𝒈 (𝒓) =  −𝑔(𝑧)𝒌  (𝒌 – z ort) 

Then, for a homogeneous body, 

𝑑𝑷 =  −𝛾𝑔(𝑧)𝑑𝑉 𝒌 = −𝑑𝑃 𝒌 

The center of gravity of a body is a point with a radius vector  

𝒓𝑐 =
1

𝑃
∭𝒓𝑑𝑃          

The field is homogeneous if g is the same for all particles. Then the gravity of the body is a 

vector 

𝑷 = 𝑀𝒈       

and the center of gravity coincides with the center of mass of the body 

The Earth's field is heterogeneous, so the center of gravity of television towers does not 

coincide with their center of mass.  The question is: which is higher? 

  

Classification of forces 

The forces acting on the particles of the system are naturally divided into two classes. 

Let us call the internal forces 𝑭𝑘
𝑖   the forces of interaction between the particles of the system, 

external forces 𝑭𝑘
𝑒  - the forces of interaction between the particles of the system and the particles 

outside the system. This division is conditional; it depends on the boundaries of the system 

chosen by us.  For example, for chalk lying on the table, the force of interaction with the table 

can be internal, if the table is included in the system, and external, if the system is the chalk only.  

Properties of internal forces 

According to Newton's 3rd law, the internal forces are paired, which means that their principal 

vector and principal moment with respect to any point are equal to zero. 

𝑽𝑖 = ∑𝑭𝑘
𝑖 = 𝟎,     𝑴𝒐

𝒊 = ∑𝒎𝒐 (𝑭𝑘
𝑖 ) = 𝟎        

Here 𝑭𝑘
𝑖  is the resultant (sum) of the internal forces applied to the particle mk 

Internal forces are balanced only for a solid.  Thus, the solar system moves precisely under the 

influence of internal forces. 

 

Differential equations of motion of a system 

Newton's 2nd law for particles of a system  

𝑚𝑘𝒓̈𝑘 = 𝑭𝑘
𝑒(𝒓1…𝒓𝑛; 𝒓̇1… 𝒓̇𝑛; 𝑡) + 𝑭𝑘

𝑖 (𝒓1…𝒓𝑛; 𝒓̇1… 𝒓̇𝑛; 𝑡)    (𝑘 = 1,2, … , 𝑛)   

gives n ordinary vector differential equations of the 2nd order with respect to the laws of motion 

of particles  𝒓𝑘 (𝑡) (𝑘 = 1,2, … , 𝑛) 
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 To solve problems, scalar form of equations is required. In the Cartesian coordinate system, 

they are equivalent to 3n scalar equations.  

𝑚𝑘𝑥̈𝑘 = 𝐹𝑘𝑥
𝑒 (𝑥1…𝑧𝑛; 𝑥̇1… 𝑧̇𝑛; 𝑡) + 𝐹𝑘𝑥

𝑖 (𝑥1…𝑧𝑛; 𝑥̇1… 𝑧̇𝑛; 𝑡)    (𝑘 = 1,2, … , 𝑛) 

𝑚𝑘𝑦̈𝑘 = 𝐹𝑘𝑥
𝑒 (𝑥1…𝑧𝑛; 𝑥̇1… 𝑧̇𝑛; 𝑡) + 𝐹𝑘𝑥

𝑖 (𝑥1…𝑧𝑛; 𝑥̇1… 𝑧̇𝑛; 𝑡)      

𝑚𝑘𝑧̈𝑘 = 𝐹𝑘𝑥
𝑒 (𝑥1…𝑧𝑛; 𝑥̇1… 𝑧̇𝑛; 𝑡) + 𝐹𝑘𝑥

𝑖 (𝑥1…𝑧𝑛; 𝑥̇1… 𝑧̇𝑛; 𝑡) 

In most cases, integrating these equations is analytically difficult because the internal 

forces are unknown functions.  Even when they are known, for example, in the problem of three 

particles interacting according to the law of universal gravitation, there is no analytical solution. 

Numerically, they are solved without problems on the computer. 

Sometimes it is enough to study the movement of the system "as a whole".  This is 

especially true for a solid. For a solid, it is enough to learn how it’s center of mass moves and 

how the body rotates around the center of mass.  

3 general theorems of system dynamics allow us to study the motion of the system as a 

whole: 

- theorem of the change in momentum (theorem of the motion of the center of mass), 

- Angular momentum change theorem, 

- Theorem of the change of kinetic energy. 

  

THEOREM OF THE CHANGE IN MOMENTUM. 

 

Theorem on the motion of the center of mass  

 

The momentum of the particle 𝑚𝑘 of the system is called the vector 

𝒒𝒌 = 𝑚𝒌𝑽𝒌 

where 𝑽𝒌is the velocity of the particle at the moment. 

Consider the system  𝑚1, 𝑚2, … .𝑚𝑘… 𝑚𝑛  

The momentum of the system is the principal vector of the 

momentums of all particles of the system  

𝑸 =∑𝒒𝒌 =∑𝑚𝒌𝑽𝒌            

In projections on Cartesian axes 

  𝑄𝑥 = ∑𝑚𝒌𝑥̇𝑘    𝑄𝑦 = ∑𝑚𝒌𝑦̇𝑘           𝑄𝑥 = ∑𝑚𝒌𝑥̇𝑘             

Since the masses of the particles are constant, Q can be expressed in terms of the velocity of the 

center of mass 

𝑸 =
𝑑

𝑑𝑡
∑𝑚𝒌𝒓𝑘 =

𝑑

𝑑𝑡
𝑀𝒓𝑐 = 𝑀𝑽𝒄             

𝑄𝑥 = 𝑀𝑥̇𝑐,         𝑄𝑦 = 𝑀𝑦̇𝑐,            𝑄𝑧 = 𝑀𝑧̇𝑐           

Examples. 

𝑚𝒌 

𝑽𝒌 

𝒒𝒌  
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a) If the center of mass of a rotating body lies on the axis of rotation, then 𝑽𝒄 = 𝟎, and 

the momentum of the body is zero. 

b) The momentum of the wheel depends only on the velocity of its center and does not 

depend at all on the velocity of its rotation.  𝑽𝒄 

Let us write Newton's 2nd law for a particle in the system in the form𝑚𝑘 

𝒒̇𝑘 = 𝑭𝒌
𝒊 + 𝑭𝒌

𝒆  

Here 𝑭𝒌
𝒊 is the resultant of all internal forces, and 𝑭𝒌

𝒆  of all external forces applied to the𝑚𝑘 

particle. Summing up by k, we get 

𝑸̇ = 𝑽𝒊 + 𝑽𝒆 

The principal vector of internal forces 𝑽𝒊 = 𝟎, which leads to the theorem of the change in the 

momentum of the system 

𝑸̇ = 𝑽𝒆          (4)  

In projections on Cartesian axes 

𝑄̇𝑥 = ∑𝐹𝑘𝑥
𝑒 ,                  𝑄̇𝑦 = ∑𝐹𝑘𝑦

𝑒 ,               𝑄̇𝑧 = ∑𝐹𝑘𝑧
𝑒    

As 

𝑸̇ = 𝑀𝑽̇𝒄 = 𝑀𝑾𝒄 

then this theorem can be written in the form of a theorem on the motion of the center of mass. 

𝑀𝑾𝒄 = 𝑽
𝒆           (5) 

It has the form of Newton's second law:  

The center of mass of the system moves  

as a particle with the mass of the system M, to which all the external forces are applied. 

So, if we neglect air resistance, then after the explosion of a firework projectile, the 

center of mass of its parts continues to move along the same trajectory (parabola) as the 

unexploded projectile. 

In projections on Cartesian axes 

𝑀𝑥̈𝑐 = ∑𝐹𝑘𝑥
𝑒   𝑀𝑦̈𝑐 = ∑𝐹𝑘𝑦

𝑒   𝑀𝑧̈𝑐 = ∑𝐹𝑘𝑧
𝑒        (6) 

Consequences of theorems 

1. Internal forces do not directly affect the momentum of the system Q and the velocity 

𝑽𝒄of the center of mass.  However, they can cause external forces that can change the 

momentum.  

For example, internal forces in the car engine cause friction between the wheels and 

the road, which moves the car, changing the velocity of its center of mass.  

Another example explains the "miracle." In South America, there is a tree from which 

nuts fall in the fall.  After a while, the hard nuts begin to jump, causing terror among the 

uninitiated - After all, a solid body cannot jump.  An explanation was found, cracking a 

nut.  There they found a bug that emerged from a larva that gnawed through a nut and ate 

its contents.  In the resulting space, the bug begins to jump.  A nut jumps with it.  Thus, 

the internal forces of the bug cause an external reaction of the Earth, which sets in motion 
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the center of mass of the system beetle - nut.  In exactly the same way, you can stand on a 

chair, cover yourself with a box and jump with this hard shell. 

2. If 𝑽𝒆 = 𝟎, then Q and 𝑽𝒄are conserved.  Thus, the center of mass of the solar system 

moves uniformly and in a straight line in the universe. 

3. If 𝑉𝑥
𝑒 = 0, then Qx and 𝑥̇𝑐 are conserved.  

For example, when a car with a jet engine is moving, the center of mass of the 

vehicle-fuel system remains in place: the car and exhaust gases move in different 

directions.   

Here we can also give an example of a well-known scam. In the 80s, "inertoids" 

were demonstrated on popular science TV shows. They allegedly proved the existence, in 

addition to the generally recognized support and reactive methods of propulsion, also of 

the "inertial" method.   

A box on a cart with freely rotating wheels was demonstrated.  The toggle switch turned 

on, and the mechanism began to buzz inside the box. The cart was placed on the floor and 

released without a push. The cart began to move, which, allegedly, proved the presence of 

an inertial method of movement.   

This experiment does not prove anything new. He simply illustrates consequence 3. 

If you open the box, you will find a motor with an unbalanced weight on its axe.  At the moment 

of releasing the cart, external forces along the x-axis disappear, and then the center of mass 

retains the horizontal component 𝑽𝑪𝒙of its velocity.  At the same time, the cart itself does not 

move evenly, but jerkily. 

 

THEOREM OF THE CHANGE IN ANGULAR MOMENTUM 

Angular momentum of particle and system with respect to a center and an axis 

  Let us consider a system of material particles with masses 𝑚1, 𝑚2, … .𝑚𝑗 … 𝑚𝑛 that have 

velocities 𝑽𝟏, 𝑽𝟐, . . . . . 𝑽𝒏 relative to the inertial frame of reference at a given moment.    

 Angular momentum of particle 𝑚𝑗  relative to the center O is a vector equal to the moment of its 

momentum relative to this center. 

𝑲𝒐𝒋 = 𝒎𝒐(𝒒𝒋) = 𝒓𝒋 ×𝒎𝒋𝑽𝒋     (𝑗 = 1,2. . . 𝑛)   

It is known that vector product can be written in scalar form with the help of attached 

matrix R of the first factor radius-vector 𝒓 . 

Omitting the index j, we write the matrix 

expression in the axes x, y, z beginning at point O: 

𝐾𝑜 = 𝑚𝑅𝑣   

where R is the obliquely symmetric attached matrix 

of column r 

Vc 

m1g 

m2g 

ω 

VCx 
With 
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(

𝐾𝑥
𝐾𝑦
𝐾𝑧

) = 𝑚(
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

)(
𝑥̇
𝑦̇
𝑧̇

) = 𝑚(
𝑦𝑧̇ − 𝑧𝑦̇
𝑧𝑥̇ − 𝑥𝑧̇
𝑥𝑦̇ − 𝑦𝑥̇

)      (7)   

The projection of the Angular momentum on the axis is called the Angular momentum 

of the particle with respect to the axis.   It is calculated either analytically 

according to formulas (7) or as a moment of force relative to the axis.  The 

moment is created only by the tangent component 𝒒𝜏of the vector q (Fig. 6). 

𝐾𝑧 = ∓𝑞𝜏ℎ  

The angular momentum turns to zero if the momentum (the velocity of the 

particle) lies in the same plane with the axis (parallel or intersects the axis) 

 Angular momentum of the system relative to the center O is the main 

moment of momentums of the particles of the system relative to this center. 

𝑲𝒐 = ∑𝑲𝒐𝒋 = ∑𝑚𝑗𝒓𝒋 × 𝑽𝒋   

Similarly to formula (7), the vector 𝑲𝒐 projections form a column of angular momentums with 

respect to the coordinate axes 

(

𝐾𝑥
𝐾𝑦
𝐾𝑧

) = ∑𝑚𝑗 (

𝑦𝑗𝑧̇𝑗 − 𝑧𝑗𝑦̇𝑗
𝑧𝑗𝑥̇𝑗  − 𝑥𝑗𝑧̇𝑗
𝑥𝑗𝑦̇𝑗 − 𝑦𝑗𝑥̇𝑗

)        

Let us find a connection between the angular momentums of the 

system with respect to the two fixed centers A and B.  Let us denote 

the vectors of the particle 𝑚𝑗of the system relative to the centers A 

and B 𝒓А𝑗 and  𝒓𝑩𝑗respectively.  It is obvious that ,  

𝒓А𝑗 = 𝑨𝑩 + 𝒓𝑩𝑗  

Then 

𝑲𝑨  = ∑𝑚𝑗𝒓𝑨𝒋 × 𝑽𝒋  = ∑𝑚𝑗(𝑨𝑩 + 𝒓𝑩𝒋) × 𝑽𝒋  =  𝑨𝑩 × ∑𝑚𝑗  𝑽𝒋  +  ∑𝑚𝑗𝒓𝑩𝒋 × 𝑽𝒋 

Finally 

𝑲𝑨 = 𝑲В +  𝑨𝑩 × М𝑽𝒄        or              𝑲𝑨 = 𝑲В +  𝑨𝑩 × 𝑸(8)   

The formula resembles the dependence of the main moment of the system of forces on the center.  

We see that when the center of mass C of the body is stationary (for example, spherical motion 

around C or rotation of the body around the central axis), the Angular momentum does not 

depend on the center. 

𝑽𝒄 = 𝟎 :   𝑲𝑨 = 𝑲В = 𝑲        
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Angular momentum of system in complex motion 

 In addition to the inertial reference frame with the axes x, y, and z, let us introduce 

translationally moving C-coordinates with the origin in the center of mass 

C.   Now the movement of each particle can be represented as complex.  

The velocity of the particle will be the sum of the transport velocity 𝑽𝑪, 

which is equal for all particles to the velocity of the center of mass C and 

the relative velocity  𝑽𝒋𝒓 

𝑽𝒋 = 𝑽𝑪 + 𝑽𝒋𝒓  

In addition, the figure shows that  

𝒓𝒋 = 𝒓𝑪 + 𝝆𝒋  

For now  

𝑲𝒐 =∑𝑚𝒋(𝒓𝑪 + 𝝆𝒋) × (𝑽𝑪 + 𝑽𝒋𝒓) = 𝒓𝑪 ×𝑽𝑪∑𝑚𝒋 + 𝒓𝑪 ×∑𝑚𝒋 𝑽𝒋𝒓 + (∑𝑚𝒋𝝆𝒋) × 𝑽𝑪 + 

+∑𝑚𝒋𝝆𝒋 × 𝑽𝒋𝒓 

Here, the second and third terms are equal to zero according to the definition of the center of 

mass 

∑𝑚𝒋𝝆𝒋 = 𝑀𝝆𝒄 = 𝟎  ∑𝑚𝒋𝑽𝒓𝒋 =
𝑑

𝑑𝑡
∑𝑚𝒋𝝆𝒋 = 𝟎   

The latter term can logically be called the relative Angular momentum of the system 

𝑲𝑪 = ∑𝑚𝑗𝝆𝒋 × 𝑽𝒓𝒋   

For now 

𝑲𝑶 = 𝑲𝑪 + 𝒓𝑪 ×𝑀𝑽𝑪  (9) 

It should be noted that, in contrast to the similar formula relating the angular momentums 

with respect to the fixed centers, here C moves arbitrarily and the relative velocities of the 

particles are included in 𝑲𝑪.  The derivation of the formula shows that such a simple formula (9) 

is valid only for the center of mass, which emphasizes the importance of this center in dynamics. 

 

Theorem of the change in the angular momentum of a system. 

 Differentiating  

𝑲𝒐 = ∑𝑲𝒐𝒋 = ∑𝑚𝑗𝒓𝒋 × 𝑽𝒋 

by time, we find 

𝑑𝑲𝑶/𝑑𝑡 = ∑𝑚𝑗(𝑽𝒋 × 𝑽𝒋 + 𝒓𝒋 ×𝑾𝒋) =  ∑𝒓𝒋 ×𝑚𝑗𝑾𝒋 =  

= ∑ [𝒓𝒋 × (𝑭𝒋
𝒆 + 𝑭𝒋

𝒊)] =  ∑𝒎𝑶(𝑭𝒋
𝒆) + ∑𝒎𝑶(𝑭𝒋

𝒊) = 𝑴𝑶
𝒆 +𝑴𝑶

𝒊 = 𝑴𝑶
𝒆    

Here it is taken into account that the vector product of the vector by itself and the main moment 

of the internal forces are equal to zero.   Thus, we come to the theorem of the change in kinetic 

momentum  

𝑑𝑲𝑶/𝑑𝑡 = 𝑴𝑶
𝒆   (10) 

In projections on Cartesian coordinate axes 

𝑑𝐾𝑋
𝑑𝑡

=∑𝑚𝑋 (𝐹𝑘
𝑒),           

𝑑𝐾𝑌
𝑑𝑡

=∑𝑚𝑌 (𝐹𝑘
𝑒),           

𝑑𝐾𝑍
𝑑𝑡

=∑𝑚𝑍 (𝐹𝑘
𝑒),                      
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1. Internal forces do not change the Angular momentum directly.   However, as in the 

theorem of the motion of the mass center, they can cause external forces that change the 

kinetic momentum. 

2. If  𝑴𝑶
𝒆 = 0, then vector 𝑲𝑶 = 𝑪𝒐𝒏𝒔𝒕.   For example, for the Solar System, which can be 

considered isolated from the external influence of distant galaxies, the 

angular momentum vector retains its direction and modulus.   The 

plane perpendicular to it, called the Laplace plane, also retains its 

position in relation to the heliocentric inertial frame of reference. 

3. If М𝑧 = 0, in the special case, only, then the corresponding 

projection К𝑧 = С𝑜𝑛𝑠𝑡 of the Angular momentum is preserved.  Thus, the Angular 

momentum of a conical pendulum relative to the vertical axis will not change over time, 

since М𝑧 = 0 .          

Let us substitute expression (9) into formula (10).   After differentiation, we get 

𝑑𝑲С /𝑑𝑡 + 𝑽𝑪 ×𝑀𝑽𝑪 + 𝒓𝑪 ×𝑀𝒘𝑪 = 𝑴𝑶
𝒆  

Taking into account the fact that 𝑽𝑪 ×𝑀𝑽𝑪 = 𝟎,   М𝑾𝑪 = 𝑽𝒆 and the theorem on the 

dependence of the principal moment on the center  

𝑴𝑶
𝒆 − 𝒓𝑪 × 𝑽

𝒆 = 𝑴𝒄
𝒆 

we arrive at the theorem of the change in relative angular momentum 

𝑑𝑲С /𝑑𝑡 =  𝑴𝑪
𝒆   (11) 

It has the same form as a theorem in an inertial system. 

In projections on the x, y, z axes with the beginning at the center of mass of the system 

𝑑𝐾𝑥
𝑑𝑡

=∑𝑚𝑥 (𝐹𝑘
𝑒),           

𝑑𝐾𝑦

𝑑𝑡
=∑𝑚𝑦 (𝐹𝑘

𝑒),           
𝑑𝐾𝑧
𝑑𝑡

=∑𝑚𝑧 (𝐹𝑘
𝑒),                      

 

Angular momentum of a body in spherical motion. Inertia matrix 

 Let us consider a rigid body making a spherical motion around a fixed particle O.   (Fig.7). The 

Angular momentum of the body should be calculated by the formula 

 𝑲о =∭[𝒓 × (𝝎 ×  𝒓)]𝑑𝑚   =  −∭[𝒓 × (𝒓 ×  𝝎)]𝑑𝑚  (12) 

Here dm is the mass of the elementary particle, 𝝎×  𝒓 – its velocity.  

Let us represent formula (12) in matrix form by writing the vector product 

in terms of the attached obliquely symmetric matrix R of the radius - vector 

r in the Cartesian axes associated with the body. 

𝒓 × (𝒓 × 𝝎)   −> 𝑅 (𝑅𝜔)  = 𝑅2𝜔,  

Where  

 𝑅 =

0
0
0

−
−

−















z y
z x
y x

,           𝜔 = (

𝜔𝑥
𝜔𝑦
𝜔𝑧
)       

 Get 

 𝐾о = (−∭𝑅2𝑑𝑚 )𝜔 (13) 

The value in parentheses at (13) is a 3x3 matrix, and is called the inertia matrix  𝐽о  at the center 

O and the x, y, and z axes.   

Jo=−∭𝑅2𝑑𝑚  (14) 

Ко

Рис.4  
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Axial and centrifugal moments of inertia 

  Let's calculate the inertia matrix according to formula (14).   

−𝑅2 = −

0
0
0

−
−

−















z y
z x
y x

0
0
0

−
−

−















z y
z x
y x

=

y z xy xz

yx z x yz

zx zy x y

2 2

2 2

2 2

+ − −

− + −

− − +















  

The integral of a matrix is a matrix of the integrals of its elements, so 

𝐽𝑜 =

(

 
 
 
∭(𝑦2 + 𝑧2)𝑑𝑚 −∭𝑥𝑦𝑑𝑚 −∭𝑥𝑧𝑑𝑚

−∭𝑦𝑥𝑑𝑚 ∭(𝑧2 + 𝑥2)𝑑𝑚 −∭𝑦𝑧𝑑𝑚

−∭𝑧𝑥𝑑𝑚 −∭𝑧𝑦𝑑𝑚 ∭(𝑥2 + 𝑦2)𝑑𝑚
)

 
 
 

       

We see that the matrix Jo is symmetric (∭𝑦𝑥𝑑𝑚 =∭𝑥𝑦𝑑𝑚, etc.) and, therefore, has only six 

different elements.   Diagonal elements are called axes moments of inertia of the body with 

respect to the x, y, and z.  

𝐽𝑥 =∭(𝑦2 + 𝑧2)𝑑𝑚, 𝐽𝑦 =∭(𝑧2 + 𝑥2)𝑑𝑚, 𝐽𝑧 =∭(𝑥2 + 𝑦2)𝑑𝑚      

 The remaining three integrals are called- centrifugal moments of inertia 

𝐽𝑥𝑦 = 𝐽𝑦𝑥  =∭𝑥𝑦𝑑𝑚,          𝐽𝑦𝑧 = 𝐽𝑧𝑦  =∭𝑦𝑧𝑑𝑚,           𝐽𝑧𝑥 = 𝐽𝑥𝑧  =∭𝑧𝑥𝑑𝑚,               

Dimension of all moments of inertia [J] = 𝑘𝑔 𝑚2.    

 In the accepted notations, the inertia matrix acquires the form 

𝐽𝑜 = (

𝐽𝑥 −𝐽𝑥𝑦 −𝐽𝑥𝑧
−𝐽𝑦𝑥 𝐽𝑦 −𝐽𝑦𝑧
−𝐽𝑧𝑥 −𝐽𝑧𝑦 𝐽𝑧

)   (15) 

Now the Angular momentum of a rigid body in spherical motion takes the form 

𝐾𝑜 = (

𝐾𝑥
𝐾𝑦
𝐾𝑧

) = (

𝐽𝑥 −𝐽𝑥𝑦 −𝐽𝑥𝑧
−𝐽𝑦𝑥 𝐽𝑦 −𝐽𝑦𝑧
−𝐽𝑧𝑥 −𝐽𝑧𝑦 𝐽𝑧

)(

𝜔𝑥
𝜔𝑦
𝜔𝑧
) = (

𝐽𝑥𝜔𝑥−𝐽𝑥𝑦𝜔𝑦−𝐽𝑥𝑧𝜔𝑧
−𝐽𝑦𝑥𝜔𝑥 + 𝐽𝑦𝜔𝑦−𝐽𝑦𝑧𝜔𝑧
−𝐽𝑧𝑥𝜔𝑥−𝐽𝑧𝑦𝜔𝑦 + 𝐽𝑧𝜔𝑧

)  (16)  

  Let us consider the main properties of moments of inertia (other properties will be 

considered in a special chapter).   

Axial moments of inertia 

  Note that under the signs of the integral there are squares of the distances h from the 

particle 𝑑𝑚 to the corresponding axis.   So 𝑦2 + 𝑧2 = ℎ𝑥
2.  Therefore, the moment of inertia of 

the body relative to the arbitrary axis L will be equal to 

𝐽𝐿 =∭ℎ𝐿
2  𝑑𝑚   

where ℎ𝐿  is the distance of the current particle to the axis. 
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We see that the axial moment cannot be negative or equal to zero, and characterizes the distance 

of the body masses from the axis.  For example, the moment of inertia 

of the rod relative to the perpendicular axis will be greater than 

relative to the inclined axis (Fig.8) since 𝑥 > ℎ for any particle of the 

member. 

𝐽𝑧 > 𝐽𝑧′ 

 Let us calculate the axial moment of inertia of the homogeneous 

rod of mass 𝑀 =  𝛾𝐿 (γ is the linear density, L is the length of the rod) with respect to the z-axis  

𝐽𝑧 = ∫𝑥
2𝑑𝑚 = 𝛾∫𝑥2𝑑𝑥 = 𝛾

𝐿3

3

𝐿

0

𝐿

0

= 𝑀
𝐿2

3
  кг м2            (17) 

Expressions of moments of inertia for the bodies of regular shape with respect to some axes can 

be found in reference books. 

Centrifugal moments of inertia.     

  In contrast to axial moments of inertia, centrifugal moments of inertia can be negative or 

equal to zero.  The axis is called the major axis of inertia at point O if both centrifugal moments 

with its index are zero.  So, the z-axis will be the main axis in O if 

𝐽𝑧𝑥 = 𝐽𝑦𝑧 = 0   

  It can be shown that at any point in space for a given body there are three mutually 

perpendicular principal axes of inertia XYZ, in which the inertia matrix will be diagonal. 

𝐽𝑂  =

J

J

J

X

Y

Z

0 0

0 0

0 0













   

Rotation of the body around a major or central axis  

  Let us align the z-axis with the axis of rotation and select the origin O on it (Fig.9). Then 

formula (16) will take the form    𝜔𝑥 = 𝜔𝑦 = 0    (

𝐾𝑥
𝐾𝑦
𝐾𝑧

) = (

−𝐽𝑥𝑧
−𝐽𝑦𝑧
𝐽𝑧

)𝜔𝑧   

 

Fig.9 

We see that in this case the vectors 𝑲𝑶 and 𝝎 are not collinear.  
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  According to the formula  

𝑲𝑨 = 𝑲о +  𝑨𝑶 × М𝑽𝒄  ≠ 𝑲о              

Let us now assume that the z-axis is not the central axis, but the main axis in O.  Then   𝑲о is 

directed along the axis of rotation (Fig. 9).   

(

𝐾𝑥
𝐾𝑦
𝐾𝑧

) = (
0
0
𝐽𝑧

)𝜔𝑧      

But still 𝑲𝑨  ≠ 𝑲𝒐, because the axis is not central.    

If, finally, the z-axis is the main axis in O and the central axis, then the Angular momentum will 

not depend on the position of the point on the axis of rotation.  This means that 

𝑲А = 𝑲О  =  𝑲С         

And all of them lie on the axis of rotation.  It follows that  

The main central axis is the main at any it’s point. 

 

Transformation of the inertia matrix.  Steiner-Huygens formula 

Let us consider a body in spherical motion around point O.  The velocity of an arbitrary 

particle of the body, including the center of mass C, should be sought according to Euler's 

formula. 

𝑽𝑪 = 𝝎× 𝒓С  = −𝒓С  × 𝝎      

In matrix form 

𝑉𝐶  = − 𝑅𝐶𝜔  

Here, 𝑅𝐶 is the attached matrix of column 𝑟𝐶 

By substituting this expression into the formula  

𝑲𝒐 = 𝑲𝒄 + 𝒓𝑪 ×М𝑽𝒄                                 
 get 

𝐽𝑜𝜔 = (𝐽𝑐 −  𝑀𝑅𝑐
2)𝜔     

We come to the generalized Steiner-Huygens formula 

𝐽𝑜 = 𝐽𝑐 +𝑀(− 𝑅𝑐
2);     −𝑅𝑐

2 = (

𝑍𝑐
2 + 𝑌𝑐

2 −𝑋𝑐𝑌𝑐 −𝑋𝑐𝑍𝑐
−𝑌𝑐𝑋𝑐 𝑍𝑐

2 + 𝑋𝑐
2 −𝑌𝑐𝑍𝑐

−𝑍𝑐𝑋𝑐 −𝑍𝑐𝑌𝑐 𝑋𝑐
2 + 𝑌𝑐

2

) (18) 

Formula (18) makes it possible to determine the components of the inertia matrix when the 

coordinate axes are transferred translatory. 

  Let us consider two parallel axes of coordinates, 𝑋, 𝑌, 𝑍 with the origin in O and 𝑥, 𝑦, 𝑧 in the 

center of mass C, respectively. Let us find out how the axial moment of inertia changes during the parallel 

transfer of the axis.  Comparing the lower right elements of the matrix expression (18), 

(
𝐽𝑍

) = (
𝐽𝑧

) +𝑀(
𝑋𝑐
2 + 𝑌𝑐

2
) 

 Find 

𝐽𝑍 = 𝐽𝑧 +𝑀(𝑋𝑐
2 + 𝑌𝑐

2)    𝑜𝑟     𝐽𝑍 = 𝐽𝑧 +𝑀𝑑
2  (19) 
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Here, d is the distance between the Z and z axes.   This is the Steiner-Huygens formula, which expresses 

the moment of inertia of a body relative to an arbitrary axis through a moment of inertia relative to a 

central axis parallel to it.   

  Formula (19) shows that the moment of inertia with respect to the central axis is the minimum 

among all the axes parallel to it. 

𝐽𝑧с < 𝐽𝑍 

  Comparing the non-diagonal elements of the matrix relation (18), we find the formula for 

transforming centrifugal moments of inertia when transferring the coordinate system.  For example, 

𝐽𝑋𝑌  =  𝐽𝑥𝑦  − 𝑀𝑋𝐶𝑌𝐶    

 

DYNAMICS OF SOLIDS 

The dynamics of a solid body is fully described by two general theorems that we have 

studied: the theorem on the motion of the center of mass and the theorem on the change of 

angular momentum.  

General equations of motion of a rigid body.  Dynamic equivalence of systems of forces 

  The main problem of the dynamics of a rigid body is to determine its motion under the action of 

given forces and constraints reactions.  If the body is free (no constraints, Fig. 9), then you should find  

 

 

 

 

 

 

 

 

functions of the six functions of coordinates 𝑥с(𝑡), 𝑦с(𝑡)𝑧с(𝑡)   и (𝑡) (𝑡) ( 𝑡 ).   

 If the body is not free, then, in addition to the law of motion, it is necessary to find 

reactions of constraints. Let us assume that there is no friction, and let us consider special cases 

of motion. 

In plane motion (Fig.10) we look for three coordinate functions 

𝑥с(𝑡), 𝑦с(𝑡) 𝜑 (𝑡)  and three reactions of the plane along which the body moves: the normal 

reaction N and the moments relative to the axes x and y.  Again, it turns out that there are six 

unknowns. 

  A rotating body (Fig.11) has one coordinate (angle of rotation ) and five unknown 

reactions 𝑿𝑨, 𝒀𝑨, 𝒁𝑨, 𝑿𝑩, 𝒀𝑩.   Here again six unknowns. 

  Thus, in any motion of a rigid body, it is necessary to have six scalar equations to 

determine the law of motion and constraint reactions.  Let's call them general equations of 

motion of a body.   

  The general equations of motion of a body are a consequence of two theorems: the 

motion of the center of mass and the change in relative angular momentum.   
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𝜑 
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Wi

th 𝜃, 𝜑, 𝜂 

𝑍𝑐 

𝑌𝑐 𝑋𝑐 
Fig.9 

𝑌𝑐 

𝑋𝑐 

𝒁 

𝜑 

𝑀𝑥 
𝑀𝑦 

Wi

th 

Fig.10 



25 

 

𝑀𝒘𝑪 = 𝑽
𝒆   

𝑑𝑲С /𝑑𝑡 = 𝑴С
𝒆   

 In matrix form 

𝑀𝑤𝐶 = 𝑉𝑒
 𝑑

𝐾С

𝑑𝑡
= 𝑀С

𝑒            (20)  

  However, it is difficult to use the second theorem (20) because the matrix of inertia of a 

rotating body in the moving axes is an unknown function of time 𝐽𝐶  (𝑡), so it cannot be 

differentiated. 

𝐾С(𝑡) = 𝐽С(𝑡)𝜔(𝑡)                          

Therefore, it is necessary to move on to the frame of reference associated with the body.  

In it, the matrix of inertia will no longer depend on time.   

𝐾С(𝑡) = 𝐽С𝜔(𝑡)      

If the vector 𝑲С is given in a mobile reference system, then the derivative of it should be 

taken according to the theorem on the connection of derivatives (recall the complex motion of a 

particle). 

𝑑𝑲С
𝑑𝑡

=  
𝑑𝑟𝑲С
𝑑𝑡

+  𝝎 × 𝑲С    

In matrix form  

𝑑𝐾С
𝑑𝑡

= 𝐽𝑐𝜀 + Ω𝐽𝑐𝜔           

We come to the general equations of motion of a body in the reference system associated 

with the body 

   𝑀𝑤𝐶 = 𝑉
𝑎 + 𝑉𝑅     (21) 

     𝐽𝑐𝜀 + Ω𝐽𝑐𝜔 = 𝑀𝑐
𝑎 +𝑀𝑐

𝑅
 

Here, the first equation is written in the fixed axes, the second in the axes associated with the 

body, and the external forces are divided into active and constraint reactions (index R) 

In cases of spherical and rotational motions, C in the second formula can be replaced by a fixed 

particle O. 

  In their expanded form, general equations are a system of six scalar equations.  These 

equations determine both the motion of the body according to the initial conditions and the 

reactions of the constraints.    

  We will call Equivalent systems of forces the systems that generate the same differential 

equations of the motion of a body and the reaction of constraints.  There was no movement in 

Static, and we called statically Equivalent systems of forces that cause the same constraint 

reactions.  It has been shown that the condition for the static equivalence of two systems of 

forces is the equality of their principal vectors and principal moments. 

  For a given body, equations (21) are the same for loads with the same principal vector 

and principal moment 
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Hence, the condition for the dynamic equivalence of two loads applied to a solid body is again 

the equality of their principal vectors and principal momentums.   

 

Equations of translatory motion of a body 

  Since the body does not rotate in translatory motion,  

𝜔 ≡ 0  (𝜀 =  0)   𝑊𝑐 = (
𝑥̈𝑐
𝑦̈𝑐
𝑧̈𝑐

)   

and the main vector of the reactions of the constraints is equal to zero, then equations (20) 

acquire the form 

𝑀𝑥̈𝑐 =∑𝐹𝑘𝑥                               0 =∑𝑚𝑥(𝐹𝑘) + 𝑀𝑥
𝑅 

                   𝑀𝑦̈𝑐 =∑𝐹𝑘𝑦                               0 =∑𝑚𝑦(𝐹𝑘) + 𝑀𝑦
𝑅          (22) 

𝑀𝑧̈𝑐 =∑𝐹𝑘𝑧                               0 =∑𝑚𝑧(𝐹𝑘) + 𝑀𝑧
𝑅 

Three differential equations define the law of motion of a body 𝑥𝑐(𝑡), 𝑦𝑐(𝑡), 𝑧𝑐(𝑡), and the 

remaining equations are used to find the main moments of the reactions of constraints with 

respect to the three axes. 

  

 

Equations of rotational motion of a body.  

  Let the body rotate around the z-axis.  In this case, the law of rotation  (t) and five 

unknown reactions 𝑿𝑨, 𝒀𝑨, 𝒁𝑨, 𝑿𝑩, 𝒀𝑩  are determined by the load and initial conditions  

𝜔𝑥 = 𝜔𝑦 = 0,                𝜔𝑧 = 𝜑̇            𝜀𝑧 = 𝜑̈                          𝑊𝐶 = (𝐸 + Ω
2)𝑟 

 E and  are the attached angular acceleration and velocity matrices. 

Now from (20) follow the complete equations of the rotational motion of the body 

𝑀(
−𝜔𝑧

2 −𝜀𝑧 0

𝜀𝑧 −𝜔𝑧
2 0

0 0 0

)(

𝑥𝑐
𝑦𝑐
𝑧𝑐
) =

(

  
 

𝑋𝐴 + 𝑋𝐵 +∑𝐹𝑘𝑥

𝑌𝐴 + 𝑌𝐵 +∑𝐹𝑘𝑦

𝑍𝐴 +∑𝐹𝑘𝑧 )

  
 

 

(
0 −𝜔𝑧 0
𝜔𝑧 0 0
0 0 0

)(

−𝐽𝑥𝑧𝜔𝑧
−𝐽𝑦𝑧𝜔𝑧
𝐽𝑧𝜔𝑧

)+ (

−𝐽𝑥𝑧𝜀𝑧
−𝐽𝑦𝑧𝜀𝑧
𝐽𝑧𝜀𝑧

) = (

𝑀𝑥
𝑎 +𝑀𝑥

𝑅

𝑀𝑦
𝑎 +𝑀𝑦

𝑅

𝑀𝑧
𝑎 +𝑀𝑧

𝑅

) 

Unfolded 

−𝑀𝑥𝑐𝜔
2 −𝑀𝑦𝑐𝜀𝑧 = 𝑋𝐴 + 𝑋𝐵 +∑𝐹𝑘𝑥 

𝑀𝑥𝑐𝜀𝑧 −𝑀𝑦𝑐𝜔
2 = 𝑌𝐴 + 𝑌𝐵 +∑𝐹𝑘𝑦 

0 = 𝑍𝐴 +∑𝐹𝑘𝑦              (23) 
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𝐽𝑦𝑧𝜔𝑧
2 − 𝐽𝑥𝑧𝜀𝑧 =∑𝑚𝑥(𝐹𝑘) −𝑌𝐵𝐴𝐵 

−𝐽𝑥𝑧𝜔𝑧
2 − 𝐽𝑦𝑧𝜀𝑧 =∑𝑚𝑦(𝐹𝑘) +𝑋𝐵𝐴𝐵 

𝐽𝑧𝜀𝑧 =∑𝑚𝑧(𝐹𝑘) 

 There are six unknowns in these six equations: the law of rotation  (t) and the five components 

of constraints reactions.   Actually differential equation of rotation is the last equation 

𝐽𝑧𝜑̈ =∑𝑚𝑧(𝐹𝑘)                   (24) 

It defines the law of rotation  (t).  The rest of the equations are used to determine the reactions 

of bearings according to the found law of rotation.   

  It should be reminded that the forces applied to the body can depend on the angle of 

rotation and the angular velocity of the body.   With the help of equation (23) it is possible to 

solve direct and inverse problems of the dynamics of the rotation of a body.   

It also follows from it force condition of uniformly accelerated rotation.  Obviously, in order to 

keep angular acceleration constant, it is necessary that the main moment of the applied forces be 

constant. 

∑𝑚𝑧(𝐹𝑘)  = 𝐶𝑜𝑛𝑠𝑡                   

 In order for the body to rotate uniformly, this moment must be equal to zero 

∑𝑚𝑧(𝐹𝑘)  = 0                    

 

Balance of a rotating body 

  After the law of motion is found from the differential equation of rotation, the reactions 

of the supports can be found from the other equations.   Equations (23) show that a 𝒁𝐴 does not 

depend on the rotation of the body, and other reactions 𝑿𝑨, 𝒀𝑨, 𝒁𝑨, 𝑿𝑩, 𝒀𝑩 can depend.   

  Experience shows that at high angular velocity, these reactions can reach values that are 

dangerous for the destruction of bearings.  Therefore, it is important to know the conditions that 

allow you to avoid such a danger.   

  The body is called dynamically balanced relative to the axis of rotation, if the reactions 

of the bearings do not depend on the rotational velocity of the body.  To find the conditions of 

equilibrium, we investigate the equations for reactions that can depend on rotation. For 

simplicity, let's rotate the x,y axes so that 𝑥𝑐 = 0. 

−𝑀𝑦𝑐𝜀𝑧 = 𝑋𝐴 + 𝑋𝐵 +∑𝐹𝑘𝑥 

                  −𝑀𝑦𝑐𝜔
2 = 𝑌𝐴 + 𝑌𝐵 +∑𝐹𝑘𝑦          (25) 

                                 𝐽𝑦𝑧𝜔𝑧
2 − 𝐽𝑥𝑧𝜀𝑧 =∑𝑚𝑥(𝐹𝑘) −𝑌𝐵𝐴𝐵 

                              −𝐽𝑥𝑧𝜔𝑧
2 − 𝐽𝑦𝑧𝜀𝑧 =∑𝑚𝑦(𝐹𝑘) +𝑋𝐵𝐴𝐵 
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Obviously, if the left-hand sides of these equations could be equal to zero, then the reactions 

would not depend on rotation, but would be determined only by the active forces.  

  The first two equations (25) give a condition: the center of gravity should ly on the axis 

of rotation.  In other words the axis should be Central 

𝑥𝑐, 𝑦𝑐 = 0                 

This condition ensures equilibrium, which is called static, since it is easily verified by "static" 

experience.  It is enough to place the axis of rotation of the body horizontally. If the body 

remains at rest at any angle of rotation, then the axis is central.  For example, if you take a 

bicycle wheel by the axle, it is easy to determine that its axle is not central, because the tube 

nipple will force the wheel to turn to its lower position. 

  The second two equations (25) give a homogeneous system of linear equations with 

respect to the moments of inertia.  Its determinant is non-zero 

|
𝜔𝑧
2 −𝜀𝑧
𝜀𝑧 𝜔𝑧

2 | = 𝜔𝑧
4 + 𝜀𝑧

2 > 0         

This means that the system will have only a zero solution if 

𝐽𝑦𝑧 = 𝐽𝑥𝑧 = 0   

  Thus, for that the body would be dynamically balanced it is necessary and sufficient that 

the axis of rotation is central and main axis of inertia. 

𝑥𝑐 , 𝑦𝑐 = 0,                  𝐽𝑦𝑧 = 𝐽𝑥𝑧 = 0                (26) 

The equilibrium conditions of a rotating body show how important is the problem of determining 

the principal axes of inertia in the body.    

 

Equations of plane motion of a body 

  Let us consider the motion of a plane figure obtained by a cross-section of a body through 

the center of mass C parallelly to the plane of motion of the body.   

  Let's align the plane of the axes 𝑥, 𝑦 with the plane figure.  Then 𝑾𝑪  and the both main 

moments of the reactions of the smooth plane will lie in the plane 𝑥, 𝑦,  and 𝝎, 𝜺 , the normal 

reaction of the plane are directed along the Z axis.  Equations of motion  

 𝑀(
𝑥̈𝑐
𝑦̈𝑐
0

) = (

∑𝐹𝑘𝑥
∑𝐹𝑘𝑦

∑𝐹𝑘𝑧 + 𝑅𝑧

)                    

(
0 −𝜔𝑧 0
𝜔𝑧 0 0
0 0 0

)(

−𝐽𝑥𝑧𝜔𝑧
−𝐽𝑦𝑧𝜔𝑧
𝐽𝑧𝜔𝑧

)+ (

−𝐽𝑥𝑧𝜀𝑧
−𝐽𝑦𝑧𝜀𝑧
𝐽𝑧𝜀𝑧

) = (

𝑀𝑥
𝑎 +𝑀𝑥

𝑅

𝑀𝑦
𝑎 +𝑀𝑦

𝑅

𝑀𝑧
𝑎

) 

Expanded  

𝑀𝑥̈𝑐 =∑𝐹𝑘𝑥 ,     𝑀𝑦̈𝑐 =∑𝐹𝑘𝑦 ,     0 = 𝑅𝑧 +∑𝐹𝑘𝑧 

𝐽𝑦𝑧𝜔𝑧
2 − 𝐽𝑥𝑧𝜀𝑧 =∑𝑚𝑥(𝐹𝑘) + 𝑀𝑥

𝑅           (27) 
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−𝐽𝑥𝑧𝜔𝑧
2 − 𝐽𝑦𝑧𝜀𝑧 =∑𝑚𝑦(𝐹𝑘) +𝑀𝑦

𝑅 

𝐽𝑧𝜑̈ =∑𝑚𝑧(𝐹𝑘) 

First, second, and last equations  

𝑀𝑥̈𝑐 =∑𝐹𝑘𝑥 ,     𝑀𝑦̈𝑐 =∑𝐹𝑘𝑦 ,            𝐽𝑧𝜑̈ = ∑𝑚𝑧(𝐹𝑘)        (28) 

are differential equations of plane motion.  After determining 𝑥(𝑡), 𝑦(𝑡), 𝜑(𝑡) and  the 

accelerations, it is possible to find the projections of the main reaction vector 𝑅𝑧 and the main 

moments of the reactions 𝑀𝑥
𝑅𝑀𝑦

𝑅 from the remaining three equations.   Note that the plane's 

reactions will not be affected by motion if the 𝑧C is the main axis. 

 

THEOREM OF THE CHANGE IN KINETIC ENERGY  

 

Elementary work and power of force. 

  Newton's second law for a free particle 

𝑚𝑾 = 𝑭 

relates the acceleration 𝑾 of a particle to force 𝑭.     

As is known, the motion of a particle (its velocity and 

trajectory) is determined not only by the force, but also by the 

initial conditions.  By setting the position and velocity of the 

particle arbitrarily, it is possible to find the initial conditions 

corresponding to them.  The set of initial conditions corresponds to a set of possible 

velocities 𝑽 at a given particle position.  The actual velocity  𝑽at each point of the 

trajectory corresponds to the specific initial conditions. 

Let us multiply Newton's law scalarly by the actual velocity 𝑽 of the particle   

𝑚𝑾 ∙ 𝑽 = 𝑭 ∙ 𝑽       (29)   

The left side of the expression can be represented as 

𝑚𝑾 ∙ 𝑽 = 𝑚𝑽 ∙ 𝑽̇ =
𝑑

𝑑𝑡
(
𝑚𝑽 ∙ 𝑽

2
) =

𝑑

𝑑𝑡
(
𝑚𝑉2

2
) =

𝑑𝑇

𝑑𝑡
= 𝑇̇ 

Positive value 

𝑇 =
𝑚𝑉2

2
> 0                     

is called the kinetic energy of the particle. 

Right side of (29)  

𝑁(𝐹) = 𝑭 ∙ 𝑽                 (30) 
is called the power of force F 

We arrive at the theorem of the change in kinetic energy 

𝑇̇ = 𝑁           (31) 

The speed of change of the kinetic energy of a particle  

τ 

F 

Fτ 

V 
dr 

α 
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is equal to the power of the force. 

The theorem holds true in both possible and actual motion.  The theorem shows that the 

speed of change of kinetic energy is maximum if the force is collinear with the velocity, 

and it is equal to zero when they are mutually perpendicular.  

It follows, for example, that the frictional force of the wheel grip does not develop 

power in the absence of slippage. Also, the driving force or torque applied to the wheel 

has zero power at the moment of start. 

Theorem (31) can be written as 

𝑑𝑇 = 𝑭 ∙ 𝑑𝒓 = 𝑑′𝐴               𝑑𝒓 = 𝒗𝑑𝑡            (32) 

Value 

𝑑′𝐴 = 𝑭 ∙ 𝑑𝒓         (33) 

is called the elementary work of force F.   The stroke in the notation is intended to 

emphasize that, in the general case, elementary work is not a differential of some function 

A.  We will see that it is only for "potential" forces.  Reveal the dot product 𝑑′𝐴 

𝑑′𝐴 = 𝑭 ∘ 𝑑𝒓 = 𝐹𝑑𝑟𝐶𝑜𝑠𝛼 = 𝐹𝜏𝑑𝑟𝜏 = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 

It follows: 

1. The sign of work is determined by the sign of Cos: the work is positive if the 

directions of the force and displacement coincide with an accuracy of π/2. 

2. Only the tangent component of the force does the work. 

3. The work is zero if the force is perpendicular to the displacement. 

 

Let us consider the motion of a system of material particles {  𝑚1,𝑚2, … ,𝑚𝑘 , …𝑚𝑛} in 

an inertial frame of reference.   The kinetic energy of a system is a positive value  

𝑇 =
1

2
∑𝑚𝑘𝑉𝑘

2 > 0              (34) 

The resultant external and internal forces acting on the particle 𝑚𝑘 are denoted by 

𝑭𝑘
𝑒   и 𝑭𝑘

𝑖 .  The theorem of the change in the kinetic energy of a system can be written in the 

form 

 𝑚𝑘𝒘𝑘 ∙ 𝑽𝑘 = (𝑭𝑘
𝑒 + 𝑭𝑘

𝑖 ) ∙ 𝑽𝑘                    

(A repeating index 𝑘 indicates the summation by the index: from 1 to n). 

This means that the derivative of the kinetic energy of the system is equal to the sum of the 

powers of external and internal forces.  

𝑇̇ = 𝑁𝑒 + 𝑁𝑖            

Koenig's theorem. 

The center of mass of the system {𝑚1, 𝑚2, … ,𝑚𝑘, …𝑚𝑛} has a radius vector   

𝒓𝑐 =
1

𝑀
∑𝑚𝑘𝒓𝑘        
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At the center of mass C, let us choose the origin of the axes 𝑥, 𝑦, 𝑧 of a movable reference 

system moving translatory. Let us call it the C-system.  The radius vector of the particle of the 

system with respect to the center of mass is denoted by 𝝆. Now the absolute velocity of the 

particle 𝑚𝑘is represented as 

𝑽𝑘 = 𝑽𝑘
𝒆 + 𝑽𝑘

𝒓               

The transport velocity 𝑽𝑘
𝒆 is the same for all particles in the 

system 

𝑽𝑘
𝒆 = 𝑽𝒄            𝑽𝑘 = 𝑽𝒄 + 𝑽𝑘

𝒓  

 Substituting the formula into the kinetic energy  

𝑇 =
1

2
∑𝑚𝑘 (𝑽𝒄 + 𝑽𝑘

𝒓)2 =

=
1

2
𝑉𝑐
2∑𝑚𝑘 + 𝑽𝑐∑𝑚𝑘𝑽𝑘

𝒓 +
1

2
∑𝑚𝑘𝑽𝑘

𝒓𝟐 

 

∑𝑚𝑘𝑽𝑘
𝒓 =

𝑑

𝑑𝑡
∑𝑚𝑘𝜌𝑘 =

𝑑

𝑑𝑡
𝑀𝜌𝑐 = 0 

 

Arriving at König's theorem 

𝑇 =
1

2
𝑀𝑉𝑐

2 + 𝑇𝑟                       𝑇𝑟 =
1

2
∑𝑚𝑘𝑉𝑘

𝒓𝟐          (35) 

The kinetic energy of the system consists of the energy of the translatory motion with the 

center of mass and the energy 𝑻𝒓𝒐𝒇 its motion relative to the C-system.  
 

Kinetic energy of a solid. 

  Consider the movement of a free solids relative to the inertial reference system.   In the 

Koenig formula 

𝑇 =
1

2
𝑀𝑉𝑐

2 +
1

2
∑𝑚𝑘𝑉𝑘

𝒓𝟐  

for a solid, the sum becomes integral, the mass 𝑑𝑚 is elementary,  

𝑇𝑟 =
1

2
∭𝑉𝑟

2𝑑𝑚           (36) 

and the relative velocity 𝑉𝑟 of the particle in spherical motion around the center of mass C must 

be found by Euler's formula. 

𝑽𝒓 = 𝝎× 𝝆 = − 𝝆 × 𝝎            

 In the matrix form 

                𝑉𝑟 = Ω𝜚 = −𝛲𝜔           

Here  𝛲is the attached obliquely symmetric (𝛲Т = −𝛲) radius matrix of the vector 𝝆 

Let us calculate the square of the relative velocity of a particle  

𝑉𝑟
2 = 𝑉𝑟

𝑇𝑉𝑟 = (−Ρ𝜔)
𝑇(−Ρ𝜔) = 𝜔𝑇Ρ𝑇Ρ𝜔 = −𝜔𝑇Ρ2𝜔 

Substituting this expression in formula (36), we get 

 𝑇𝑟 =
1

2
𝜔𝑇[−∭Ρ2𝑑𝑚]𝜔        

 

x 

y 

z 

x1 y1 

z1 

O 

C 

r 

rC 
 

 

L 
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In square brackets, we recognize the expression of the inertia matrix with respect to the center of 

mass C. 

𝐽𝐶 = −∭Ρ2𝑑𝑚     

Now the formula of the kinetic energy of a body in voluntary motion takes the form 

𝑇 =
1

2
 (𝑀𝑉𝑐

2 + 𝜔𝑇𝐽𝐶𝜔)     (37)          

Translatory motion 

  In this case, the body does not rotate (𝝎 ≡ 0), the velocities of all particles are similar 

and therefore 

𝑇 =
1

2
 𝑀𝑉2    (38) 

Spherical motion around the center O 

  Repeating the calculations for 𝑇𝑟, but for the center O, we get a similar formula 

1) 𝑇 = 𝜔𝑇𝐽𝑜𝜔    (39) 

On the other hand, we know that the velocity of a particle of a body in spherical motion can be 

found in terms of the distance ℎ𝐿from the instantaneous axis L  

𝑉 = 𝜔ℎ𝐿  

Then 

Т =
1

2
 𝜔2∭ℎ𝐿

2𝑑𝑚               

Integral gives the moment of inertia with respect to the instantaneous axis 

𝐽𝐿 =∭ℎ𝐿
2𝑑𝑚  

And we come to the second formula 

2) Т =
1

2
 𝐽𝐿𝜔

2     (40)  

Rotary motion 

  It is a special case of spherical motion, when the instantaneous axis coincides with the 

axis of rotation z:    

Т =
1

2
 𝐽𝑧𝜔

2          (41) 

Plane motion in the 𝑥, 𝑦 plane 

  The first formula is derived from Koenig's theorem 

1) 𝑇 =
1

2
 (𝑀𝑉𝑐

2 + 𝐽𝑧𝑐𝜔
2)      (42) 

Another formula is obtained by introducing the velocity center P into consideration.  Then the 

velocity of any particle is expressed in terms of its distance ℎ𝑃 from P. 

𝑉 = 𝜔ℎ𝑃 

So there is a second formula, through the instantaneous center: 
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2)   Т =
1

2
 𝐽𝑧𝑃𝜔

2             (43) 

 

The power of the force applied to a solid. 

 Free movement.    Let the motion of the body be characterized by the velocity 𝑽𝑨 of the pole A 

and the angular velocity .  Let us find the power of the force 𝑭 applied at some point M of the 

body. 

𝑁(𝑭) = 𝑭 ∙ 𝑽 = 𝑭 ∙ (𝑽𝑨 +𝝎 × 𝝆) 

The velocity distribution theorem is taken into account here 

𝑽 = 𝑽𝑨 +  ×   

Let's make a circular permutation in the mixed product 

𝑭 ∙  (𝝎 × 𝝆) = 𝝎 ∙ (𝝆 × 𝑭) 

In parentheses, we recognize the expression of the moment of force F with respect to the pole A.  

Since   is directed along the instantaneous axis S, then 

𝝎 ∙ (𝝆 × 𝑭) = 𝝎 ∙ 𝒎𝑨(𝑭) = 𝜔𝑆𝑚𝑆(𝐹)  

where 𝜔𝑆− is the projection of angular velocity on S, and the moment 𝑚𝑆(𝐹)− is relative to this 

axis.  We come to the expression of the power of force: 

𝑁(𝑭) =  𝑭 ∙ 𝑽𝐴 + 𝑚𝑆(𝐹)𝑆         (44)  

Note that the sign of the second term is easier to determine by comparing the directions 

of momentum and rotation.   Therefore, almost often the sign is determined separately and the 

work is calculated according to the formula 

𝑁(𝑭) =  𝑭 ∙ 𝑽𝐴 ± |𝑚𝑆(𝐹)||𝑆|  

Note that, unlike Koenig's formula for kinetic energy, here pole A− is an arbitrary particle 

of the body, not necessarily the center of mass. 

  If a system of forces {𝑭} = {𝑭𝟏, 𝑭𝟐 , . . . , 𝑭𝒌. , . . , 𝑭𝒏}  is applied to the body, then after 

summing by k, we get 

𝑁{𝑭} =  𝑽{𝑭} ∙ 𝑽𝐴 ± |𝑀𝑆(𝐹)||𝑆|            (45)  

Here 𝑽{𝑭} is  − the main vector of the system of external forces, and the 𝑀𝑆− main moment 

relative to the S axis  

  Using the general formula, we obtain the expressions of work for the simplest movements 

of the body. 

Translatory motion 

  A body in translational motion does not rotate (𝝎 = 0) and all its particles have the 

similar velocity 𝑽 

𝑁{𝑭} =  𝑽{𝑭} ∙ 𝑽    (46) 
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Rotary motion 

  Here it makes sense to choose the pole A on the axis of rotation z, which is the axis S.  

Then: 

𝑽𝑨 = 0;       𝑁{𝑭} =  ±|𝑀𝑆(𝐹)||𝑆|      (47) 

A plus sign if the moment is directed as the angular velocity. 

Plane Motion 

  Let us remind that in this motion the instantaneous axis passes through the instantaneous 

center of velocities perpendicular to the plane of motion.     The formula takes the form of 

𝑁 {𝑭} = 𝑀𝑧𝑃𝜔𝑧  (48)  

The finite work of force. 

Let us consider the motion of the particle 𝑚 under the influence of the force 𝑭 along the 

trajectory from the position M1 to the position M2. Let us divide 

the curve M1 M2 into n parts. Let's draw vectors of movements 

from node to node and indicate the work on these movements 

through 

𝛥А𝑘  =  𝑭 (𝑥𝑘𝑦𝑘𝑧𝑘)   ∘ 𝜟𝒓𝒌 

The final work of the force 𝑭 on the way from position 

M1 to position M2 is called a scalar quantity equal to the limit 

𝐴12 = lim
n→∞,𝚫rk→0

∑Δ𝐴𝑘            

This limit is a curvilinear integral of the 2nd kind 

𝐴12 = ∫(𝐅(𝐫, 𝐫̇, t) ∘  d𝐫)               

1−2

 

What do we need to know to calculate this integral? 

1. If the force depends on all parameters, then you need to know the law of motion of the 

particle 𝒓(𝑡) 

𝐴12 = ∫(𝐅(t) ∘ 𝑉(𝑡) dt)               

𝑡2

𝑡1

 

2. In the case of a force field – a space at each point of it a force function 𝑭(𝒓) is given, you need 

to know the trajectory of the particle: 

𝐴12 = ∫(𝐅(r) ∘ d𝐫)

𝑟2

𝑟1

                       

3. There are force fields, called potential fields, in which only the initial and final positions of 

the particle need to be known in order to calculate the final work. Such fields will be 

considered in detail below. Here are examples of gravitational and elastic force fields. 

Gravity force work 

F (xkykzk) 

M2 

Mk (xkykzk) 

Δrk M1 
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𝑷 = 𝑚𝒈 = −𝑚𝑔𝒌    𝑃𝑧 = −𝑚𝑔 

𝑑’𝐴 = 𝑃𝑧𝑑𝑧 = −𝑚𝑔𝑑𝑧,     

 𝐴12 = −𝑚𝑔 ∫ 𝑑𝑧
𝑧2
𝑧1

= 𝑚𝑔(𝑧1 − 𝑧2) 

Usually, this formula is written in the form 

𝐴12(𝑚𝑔) = ±𝑚𝑔ℎ   (49) 

The work of gravity is positive if (𝑧1 − 𝑧2)  >  0, i.e. the particle goes down. 

The work of the elastic forces of a linear spring: 

The change in length 𝑙𝑜 of a spring is called the deformation Δ.  The stiffness of the 

spring "c" is the force required to 

elongate it per unit of length. The 

deformation Δ causes the elastic force 

𝑭.  A spring is linearly elastic if the 

elastic force is linearly dependent on 

the deformation 𝐹 = с 𝛥.  The force 

is directed to the origin O of the x 

coordinate chosen in the equilibrium 

position of the load.  Therefore, the force is called restoring (equilibrium position), │x│= Δ and   

𝐹х  =  − с х 

When moving the end of the spring from the position with the coordinate 
𝑥1    to the position 𝑥2  , the elastic force performs elementary work 

  𝑑’𝐴 =  − 𝑐𝑥 𝑑x 

and the final work 

𝐴12 = − с ∫ 𝑥𝑑𝑥

𝑥2

𝑥1

= 
1 

2
 с(х1

2 − х2
2) 

Replace coordinate squares with deformation squares 

𝐴12 = 
1

2
 с (𝛥1

2  −  𝛥2
2  )              (50)  

The sign of operation is determined by the ratio of the initial and final deformations of the 

spring. 

 

The work of Elastic Moment of Spiral Spring  

Consider a rod rotating around a vertical axis under the action of a coil spring. The 

stiffness of such a spring is equal to the torque that twists the spring by one radian.  Its 

deformation is measured by the angle of torsion in radians. Deformation causes the moment of 

elasticity  𝑐’𝛥’ = 𝜑М𝑧 = −с’𝜑. 

Elementary Work 

𝑑’𝐴 =  − 𝑐’ 𝜑 𝑑 𝜑 

h 
P=mg 

x 

y 

z 

1 

2 

B 

wi

x O 

lo 

F 

X 
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When the rod is rotated from 𝜑1 position to 𝜑2  position the elastic moment performs the 

final work 

𝐴12 = −с’ ∫ 𝜑𝑑𝜑

𝜑2

𝜑1

 =  
1

2
 с’(𝜑1

2  −  𝜑2
2 ) 

Replace coordinate squares with deformation squares 

𝐴12 =  
1

2
  с(𝛥’1

2  −  𝛥’2
2 )                        

The sign of operation is determined by the ratio of the initial and final deformations of the 

spring. 

 

 

LAGRANGE'S ANALYTICAL MECHANICS 

Newtonian mechanics provides a complete system of equations for the solution of the 

basic problem of mechanics: the determination of the law of motion of the system and the 

reactions of constraints determined by load and initial conditions.  As we have seen in the 

example of a rigid body, a part of these equations equal to the number of degrees of freedom of 

the body are differential equations of motion, the rest determine the reactions of constraints. 

  The Lagrange method makes it possible to find directly only the differential equations of 

motion of a system.   

Consider the two-body system.  The non-stretch thread and 

the absence of roller slippage leave the system with one 

degree of freedom.  Three external reactions of the plane and 

one internal reaction of the thread will be included in 

Newton's 5 equations: 2 for the body and 3 for the roller.  

Of these, only one will be the differential equation of motion of the system, which is most often 

the goal. 

The Lagrange method makes it possible to compose one differential equation at once. In 

this case, the reactions of ideal bonds will initially be excluded from consideration.  The 

Lagrange method is based on the concept of possible displacement. 

 

Classification of constraints. 

  Let us consider the motion of a system of n particles in an inertial frame of reference with 

coordinates 𝑥, 𝑦, 𝑧.  The position of the system is determined by the values of 3n coordinates 

𝑥1…𝑧𝑛 and 3n velocities  𝑥̇1...𝑧̇n 

Constraint is a condition imposed on the coordinates and velocities of particles. In general, 

the equations of the s constraints can be written in the form: 

Ф𝑖 (𝑥1…𝑧𝑛;  𝑥̇1… 𝑧̇𝑛;  𝑡) ≥  0  (𝑖 =  1, 2, … , 𝑠)                                

Other parameters, including angular ones, can also act as coordinates. 

Constraints are divided into: 
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1. Geometric and kinematic 

The equations of geometric constraints do not include velocities. Consider 2 examples: a 

pendulum A of variable length and a wheel B that rolls without slippage. 

The distance from the pendulum A to the origin cannot be greater than the variable length of the 

thread, so the equation of the constraint is as follows: 𝑥2 + 𝑦2 + 𝑧2  ≤  𝑙2 (𝑡) 

The constraint is geometrical, since there are no derived coordinates in its equation. 

When wheel B is rolling without slipping, the velocity of its center and angular velocity are 

related by the ratio 

𝑥̇  = r 𝜑̇ 

It is kinematic constraint 

 

2. Stationary and nonstationary 

In the equations of stationary constraints, time t is not included. 

  Examples: A) – nonstationary, because time is included in equation, B) – stationary 

3. Retentional (bilateral) and non-retentional (one-sided) 

Equations of retentional constraints are written through equality, non-retention - through 

inequality. 

Examples: A) – non-retentional constraint. The name of one-sided follows from the fact 

that the thread does not stretch, but can crumple.  Thus, the thread acts in one direction, 

from the center.                 C) – retentional 

4. Holonomic and nonholonomic:  

Holonomic constraints are all geometric constraints, as well as those kinematic 

constraints that can be integrated into geometric ones.  The wheel coupling equation can 

be integrated and reduced to the form of a geometric  

x – r φ = 0 

The study of systems with nonholonomic constraints is a complex section of analytical 

mechanics and is beyond the scope of the course.  Therefore, we will consider only systems with 

holonomic constraints. 

 

Generalized coordinates. The number of degrees of freedom of a system. 

The   position of the system {𝑚1, 𝑚2, … ,𝑚𝑘, …𝑚𝑛} in the inertial frame of reference is 

determined by their coordinates.  These 3n coordinates obey s equations of holonomic 

constraints: 

Ф𝑖  (𝑥1…𝑧𝑛; 𝑡) ≥  0  (𝑖 =  1, 2, … , 𝑠) 

Trajectory 

z 

Vn 

V 

l (t) 

y 

x A 

Vc 

x 

ω, φ  

C 

B 
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Thus, 𝑙 =  3𝑛 − 𝑠 of the 3𝑛 coordinates are only independent. The rest 𝑠 are expressed through 

them using constraints equations.  

For holonomic systems, the number l is called the number of degrees of freedom. The 

number l can be defined as the number of coordinates that must be fixed in order for the system 

to stop.  

Cartesian coordinates are not always convenient.  In addition, angular coordinates and 

their combinations with linear coordinates are used.  Generalized coordinates 𝑞𝑖 are parameters 

of any dimension that determine the position of the system.  

Thus, the generalized coordinates of the three-body system above can be: the coordinates 

of the center and the angle of rotation of the roller 1, the angle of rotation of block 2, the 

coordinates of the body 3.  All of them are interconnected due to the absence of slippage of the 

roller, the non-extensibility of the thread, the presence of guides.  Only one of them is 

independent, since if any of the listed parameters is fixed, the system will lose mobility.  This 

means that the system has one degree of freedom.   

In the future, we will agree that generalized coordinates are understood only as 

independent coordinates   𝑞𝑖 (𝑖 = 1,2… 𝑙). 

 

The possible, actual and virtual velocities of the system particle.   

Let us consider the motion of a non-free particle under the influence of a force 𝑭 and a 

nonstationary geometric constraint 

Ф(𝑥, 𝑦, 𝑧; 𝑡) = 0                  (51)                 

Force and constraint allow many possible movements  of a 

particle, differing in initial conditions.  A possible 

movement that actually takes place and meets specific initial 

conditions is actual.   

The equation of constraint (51) is convenient to 

interpret as the equation of the moving surface on which the 

particle moves. The figure shows a photograph of the 

surface at moment t.    

At a given moment t, the particle can be at an arbitrary point on the constraint surface and 

have an arbitrarily directed possible velocity 𝑽 that corresponds to arbitrary initial conditions.   

Any possible velocity  𝑽 is the sum of the transport velocity 𝑽𝒆 together with the surface 

and the relative velocity 𝑽𝒓 tangent to the constraint surface.   

In the case of nonstationary constraint, the relative velocity 𝑽𝒓 cannot coincide with the 

actual velocity. Therefore, it is called imaginary or virtual. 

q1 

R 
𝑽 

𝑽𝒓 

q2 0 

1 
2 

3 
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If the bond surface is smooth, then its reaction 𝑵 is normal to the surface. The Lagrange 

method is based on the fact that a normal reaction 𝑵 does not produce power at virtual velocity  

𝑽𝒓. 

𝑵 ∙ 𝑽𝒓 = 0         𝑏𝑢𝑡         𝑵 ∙ 𝑽 ≠ 0                

Excluding such reactions from consideration, we find the equations of motion of the 

particle along the surface of the bond, that is, the differential equations of motion we are looking 

for. 

In stationary communication, a particle moves along a stationary surface, its transport 

velocity is zero, possible and virtual velocities coincide and are tangent to the constraint surface.  

 

Generalized forces and reactions. Perfect constraints. 

Let's consider a particle mk of the system.  Let us denote the resultant active forces 𝐅k 

and reactions𝐍k of the constraints acting on the particle.  All possible laws of motion, including 

the actual law of motion of a particle, are functions of independent generalized coordinates and 

time  и  

𝒓k(𝑞1 𝑞2…𝑞𝑙; 𝑡) 

They satisfy the constraints equations and Newton's equations 

𝑚𝑘𝒘𝒌 = 𝑭𝒌 +𝑵𝒌 

The possible velocity 𝑽kof a particle is made up of the transport 𝑽keand virtual 𝑽kr 

(relative) velocities   

𝑽k = 𝑽ke + 𝑽kr,       𝑽ke = 
∂𝐫k
∂t
,          𝑽kr =

∂𝐫k
∂qi

q̇i        

Hereinafter, the repeating index indicates the summation of the index: k from 1 to n, i from 1 to 

𝑙. 

 Let's calculate the power of all forces at virtual velocities 𝑽kr 

∑(∑(𝑭𝑘 +𝑵𝑘) ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑘

)

𝑖

𝑞̇𝑖 = (𝑄𝑖 + 𝑅𝑖) 𝑞̇𝑖              

It is logical to call       𝑄𝑖 − generalized forces and 𝑅𝑖 − generalized reactions,  

     𝑄𝑖 = 𝑭𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

           𝑅𝑖 = 𝑵𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖
                          

since they are coefficients at generalized velocities in the expression of power.  Usually, 

generalized forces 𝑄𝑖 are found as a coefficient in the expression of the virtual power of active 

forces  

𝑭𝑘𝑽kr = 𝑄𝑖𝑞̇𝑖                   
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Let us see how this is done using the example of an elliptical pendulum. A pendulum 

consists a body of mass 𝑚1, sliding translatory without friction along the axis х , and a 

mathematical pendulum of length 𝑙 and mass 𝑚2hinged to it.  

Constraints are stationary, so virtual velocities are possible 

velocities. 

  While calculating the possible power of the active 

forces we take advantage of the independence and 

arbitrariness of the possible velocities of the system.  Their 

independence means that we can give them independently. 

The constraints are perfect and allow each of the possible 

velocities 𝑉𝑥𝜔𝑧 in two directions.  Let's try to give negative 

velocities.   

 First, for the calculation of 𝑄𝑥, we give the negative velocity 𝑉𝑥 < 0 , putting 𝜔𝑧 = 0. The 

whole system moves progressively to the left at a velocity 𝑉𝑥. In horizontal motion, vertical 

gravitational forces have no power, so 

𝑁х  =  0 and 𝑄𝑥  =  0 

 To calculate the generalized force 𝑄𝜑 , we give the system the possible velocities 𝑉х  =

 0,   𝜔𝑧 < 0 .  The body 𝑚1remains motionless; the pendulum rotates clockwise.  Only 

moment of 𝑚2𝒈 creates power at 𝜔𝑧 

𝑁𝜑 = 𝑚2𝑔 𝑙 𝑆𝑖𝑛𝜑 |𝜔𝑧| = − 𝑚2𝑔 𝑙 𝑆𝑖𝑛𝜑 𝜔𝑧 = 𝑄𝜑𝜔𝑧 

Thus  

𝑄𝜑 = − 𝑚2𝑔 𝑙 𝑆𝑖𝑛𝜑  

 In order not to make a mistake in the sign of power, it is convenient to always give 

positive generalized possible movements. 

 Constraints are called ideal if all their generalized reactions are zero. 

𝑅𝑖 = 0      (𝑖 =  1,2, … , 𝑙) 

Smooth surfaces, frictionless hinges, non-stretchable threads, etc. are ideal. 

Lagrange showed that the reactions of ideal bonds do not affect the motion of the system 

along nonstationary bonds. 

 

Static principle of possible velocities. 

Consider a system with ideal stationary constraints at rest.  Since the constraints are 

stationary, there are no trasport velocities and virtual velocities are possible. 

The principle  

For the system to remain at rest in the equilibrium position It is necessary and 

sufficient the equality to zero of all generalized forces. 

𝑄𝑖 = 0                  (52) 
Necessity. If the system is at rest, then the velocities of its particles, and hence the power 

of all forces, are equal to zero. 

(𝑄𝑖 + 𝑅𝑖) 𝑞̇𝑖 = 0  

In view of the independence and arbitrariness of generalized velocities 𝑞̇𝑖 

x 

ϕ 

𝑚𝟏𝒈 𝑙 

𝜔 

𝑽 

𝑚𝟐𝒈 
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𝑄𝑖 + 𝑅𝑖 = 0 

Since the bonds are ideal, all their generalized reactions are equal to zero and the generalized 

forces are equal to zeroRi 

𝑄𝑖 = 0 

  Sufficiency: Let 𝑄𝑖 = 0.  Let's show that the system remains at rest. Let's assume 

the opposite – the system has begun to move.  Then the kinetic energy of the system begins to 

increase, hence  

𝑇̇ = (𝑄𝑖 + 𝑅𝑖)𝑞̇𝑖 = 𝑄𝑖𝑞̇𝑖 > 0 

From where   

Qi > 0 

which contradicts the original assumption. This means that the system will remain at rest, which 

was to be proved. 

 

Sets of control problems on the principle of possible velocities can be downloaded from: 

https://disk.yandex.ru/d/itjDbi4afDNMGg 

 

 

 

An example of solving a problem on the principle of possible velocities 

A system of 2 bodies is affected by force, torque and 

distributed load.   

1. For each external reaction, transform the external 

support.  Write down the principle of possible velocities 

and velocity ratios. 

2. The question is: how should the straight rod be 

directed so that the problem becomes statically 

indefinable and the constraints insufficient? 

1. Solution 

  The supports are sufficient, i.e. they ensure 

the rest of the two-body system under any plane load.   

      The constraints are definable, since the 

reaction in the sliding embedding, being an arbitrary 

force perpendicular to the direction of slipping, cannot 

be on the AB line of the other two reactions. 

        In order to apply the principle of possible 

velocities, it is necessary to transform the support for 

each unknown reaction so that the system becomes a 

mechanism with one degree of freedom along the desired reaction. 

       We will depict only those forces and moments that create power in the possible motion of 

the transformed system.  

 

𝑿𝑨 reaction 
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We replace the hinge A with a roller along the x-axis.  We get a mechanism with one 

degree of freedom. We perceive the 

desired XA reaction as an active force 

that balances the other forces.   

       The BCD rod can move 

progressively along the guide.  Let us 

give it a possible velocity V, depicting it 

at a common point B. 

 In this case, point A of the rod AB 

will acquire velocity 𝑽𝑨 along the 

reaction 𝑿𝑨.  

       The rod AB makes a plane motion, 

rotating at a given moment around the 

instantaneous center of velocities (ICV) P 

with a possible angular velocity ω. 

       Since the mechanism is at rest, the 

principle of possible velocities is 

necessarily fulfilled. 

      The possible power of the forces applied to the rod AB in plane motion is calculated as the 

product of the angular moment relative to P and the possible angular velocity of the rod ω 

𝑋𝐴𝐴𝑃𝜔 − 𝑄
𝐴𝐵

3
𝜔 − 𝐹𝑉 𝑆𝑖𝑛 ∝= 0 

       The velocity ratio is always found through a common particle (B in this problem)): 

𝑉 = 𝜔ВР,             𝐵𝑃 =
𝐴𝐵

𝐶𝑜𝑠 ∝
 ,          𝐴𝑃 = 𝐴𝐵𝑡𝑔 ∝ ,    𝑄 =

1

2
𝑞𝐴𝐵 

By substituting the ratio of velocities in principle, it is possible to find the reaction 𝑋𝐴 

 

𝒀𝑨 reaction  

  We replace the hinge A with a roller along the axis y. The possible velocity of the joint A 

is directed along the axis y. The velocity of the joint B is parallel to CD. Therefore, the ICV of 

the AB rod is located at the point B. This means that the rod BCD is stationary, and the rod AB 

rotates around B with a possible angular velocity  𝜔. 

 

.   

    

          We equate to zero the possible power of all 

the forces applied to the rod AB, calculated as the 

product of the moment of forces relative to B and 

the angular velocity of the rod ω. 

−𝑌𝐴𝐴𝐵𝜔 + 𝑄
2𝐴𝐵

3
𝜔 = 0 

This equation determines the reaction 𝑌𝐴. 
 

Moment 𝑚𝐷  
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Put the sliding support D on the hinge, 

allowing it to rotate around D.    

Give the rod AB the possible angular 

velocity 𝜔.  The common particle B acquires 

the possible velocity V. 

The velocity of the point D is directed 

along CD, so the rod in plane motion rotates 

around the ICV P with a possible angular 

velocity 𝜔𝐵𝐶𝐷.  Its direction is determined by 

velocity V. 

 The power of the forces is calculated as the 

product of the moment relative to their velocity centers A and P, respectively, by the angular 

velocities of the rods. 

𝑄
𝐴𝐵

3
𝜔 + (𝑚𝐷 − 𝐹𝐶𝐵 −𝑀)𝜔𝐵𝐶𝐷 = 0 

The ratio of velocities 𝜔 and 𝜔𝐵𝐶𝐷 is found with the velocity 𝑽𝐵of the common point B: 

𝑉𝐵 = 𝐴𝐵𝜔 = 𝐵𝑃𝜔𝐵𝐶𝐷,             𝐵𝑃 = 𝐶𝐷𝑆𝑖𝑛 ∝ −(𝐵𝐶 − 𝐶𝐷𝐶𝑜𝑠 ∝)𝐶𝑡𝑔 ∝ ,     
Substituting the velocity ratio into the equation of the principle makes it possible to find the 

reaction moment 𝑚𝐷  

 

 

𝑵𝑫 reaction 

We replace the sliding seal D with a double sliding seal, which allows the BCD rod to 

move freely, but only translatory.  The direction 

of this translatory motion determines the velocity 

of the common joint B. 

  Give the rod AB the possible angular velocity 

𝜔 around the hinge A.  The possible velocities of 

all particles of the BCD rod are similar and equal 

V. 

 The power of the forces applied to the rod AB in 

its rotation around A is calculated as the product 

of the moment and the angular velocity ω of the 

rod.   

−𝑁𝐷𝑉 𝑆𝑖𝑛 ∝ +𝑄
𝐴𝐵

3
𝜔 = 0 

Kinematic ratio: 

𝑉 = 𝐴𝐵𝜔 

Substituting the velocity relationship into the power equation allows you to find the reaction 𝑁𝐷 

 

2. Answer to the question 

Perpendicular to CD.   

Here we must remind the fact that with the right number of unknowns, as soon as the 

constraints become redundant in one direction, they become insufficient in the other direction.   

If the AB rod is perpendicular to the CD, then there is freedom to move the BCD rod 

along the CD. At the same time, constraints will be redundant in the direction of AB. 

 

 

A 

mD Q M 

F 

B 

C 

D 

α 

𝑽𝐵  

ωBCD 

P 
ω 

A 

𝑵𝑫
A 

Q 

F 

B 

C 

D 

α 

V 

ω 

V 



44 

 

A COMPLETE SYSTEM OF EQUATIONS FOR A SYSTEM 

WITH IDEAL HOLONOMIC NON-STATIONARY CONSTRAINTS 

 

 As is known, the theorem of the change in the kinetic energy of a particle is a projection of 

Newton's second law on the direction of movement (velocity) of the particle, and leads to the 

differential equation of its motion. Lagrange used the same technique to derive the differential 

equations of a system with ideal holonomic non-stationary constraints. We will additionally 

project Newton's law onto the direction of motion of a nonstationary bond, which will allow 

us to find the reactions of ideal bonds. 

 

Lagrange identities 

Let us consider a system of particles {𝑚1, 𝑚2, … ,𝑚𝑘, …𝑚𝑛}  with ideal holonomic 

nonstationary constraints.    

𝑓𝑗(𝒓𝑘; 𝑡) = 0   (𝑗 = 1,2, … , 𝑠)           (53)       

All possible laws, including the actual law of motion of a particle 𝑚𝑘,  are functions of 

independent generalized coordinates and time 

𝒓k(𝑞1 𝑞2…𝑞𝑙; 𝑡) 
Let us calculate the velocity of the k-th particle: 

𝐕k = 𝒓̇𝑘 =
∂𝐫k
∂qi

𝑞̇𝑖 +
∂𝐫k
∂t
           (∗)  

A repeating index indicates the summation of the index: 𝑘 from 1 to n, i from 1 to 𝑙. 
Herewith 

𝜕𝒓𝑘
𝜕𝑞𝑖

(𝑞1…𝑞𝑙  ;  𝑡)  (∗∗) 

Let's prove the first Lagrange identity  𝐿1 

𝜕𝑽𝑘
𝜕𝑞̇𝑖

=
𝜕𝒓𝑘
𝜕𝑞𝑖

      (L1)               

Since (*) is a linear function 𝑞̇i with coefficients 𝜕𝒓𝑘/𝜕𝑞𝑖, the identity L 1 is true.   

 Lagrange's Second Identity  𝐿2 

𝑑

𝑑𝑡
(
𝜕𝒓𝑘
𝜕𝑞𝑗

) =
𝜕𝑽𝑘
𝜕𝑞𝑗

                    (L2)                     

is proved by direct calculation of the right and left parts of the identity. 

Differentiating (**) by time, we get 

𝑑

𝑑𝑡
(
𝜕𝒓𝑘
𝜕𝑞𝑗

) =∑
∂2𝐫k
∂𝑞𝑗𝜕𝑞𝑖

𝑞̇𝑖 +
∂2𝐫k
𝜕𝑞𝑗 ∂t

 

Differentiating (*) by , we get the same expression𝑞𝑗 

𝜕𝑽𝑘
𝜕𝑞𝑗

=∑
𝜕2𝒓𝑘
𝜕𝑞𝑗𝜕𝑞𝑖

𝑞̇𝑖 +
𝜕2𝒓𝑘
𝜕𝑞𝑗𝜕𝑡

 

Identity L2 is proved. 
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Newton's equations in projections on generalized coordinates and on the velocity of the 

constraint. 

According to Newton's second law, the resultant of the active forces 𝑭𝑘and the reactions 

𝑵𝑘 of ideal constraints acting on a particle 𝑚𝑘 of the system determine its absolute acceleration 

𝒘𝑘 in the inertial frame of reference :    

 𝑚𝑘𝒘𝑘 = 𝑭𝑘 +𝑵𝑘         (54)   
  The problem of using Newton's equations (54) to derive the differential equations of 

motion of the system consists in their vector form and in the dependence of unknown 

reactions 𝑵𝑘, and hence accelerations 𝒘𝑘, on the velocities of particles and the motion of 

nonstationary constraints. 

  Equations (53, 54) correspond to the set of possible positions, laws of motion 𝒓𝑘(𝑡), and 

velocities  𝑽𝑘generated by a set of initial conditions.  
  The possible positions of the system on the constraints can be specified by independent 

generalized coordinates {𝑞1, 𝑞2, … , 𝑞𝑖 , … 𝑞𝑙}, where l - the number of degrees of freedom of 

the system.  Then, the possible law of motion of the particle 𝑚𝑘will turn out to be a function 

of generalized coordinates and time  𝒓𝑘(𝑞𝑖, 𝑡).  
  Let us represent the motion of the system from an arbitrary position as the sum of two 

motions: the transport motion with the constraints and the relative motion along the 

constraints. The possible velocity of a particle  𝑚𝑘is the sum of the transport and relative 

velocities: 

𝑽𝑘 =
𝑑𝒓𝑘
𝑑𝑡

=
∂𝒓𝑘
∂t
+
∂𝒓𝑘
∂𝑞𝑖

𝑞̇𝑖 =  𝑽𝑘𝑒 + 𝑽𝑘𝑟            (55) 

       𝑽𝑘𝑒 = 
𝜕𝒓𝑘
𝜕𝑡
,         (56)   

𝑽𝑘𝑟 =
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑞̇𝑖            (57) 

Hereinafter, a repeating index speaks of summation by index.  

In the arbitrary position of the system on the constraints, the transport velocities 𝑽𝑘𝑒have a 

single value determined by the position of the particle at a given moment of time on the 

constraint and the equations of the constraint (53).    
The constraints (53) pictured at a given moment of time correspond to a set of relative 

velocities 𝑽𝑘𝑟 generated by a set of initial conditions.  All relative velocities are directed 

arbitrarily in the tangent plane to the bracing surface, and have an arbitrary modulus.  It is the 

relative velocities that create the many possible velocities of the system.  The relative 

velocities 𝑽𝑘𝑟 of particles are usually called virtual velocities of the system.  

It follows from expression (55) that in stationary constraints the sets of possible and 

virtual velocities coincide. 

In the given position of the system, the derivatives 𝜕𝒓𝑘/𝜕𝑞𝑖in formula (55) have a single 

meaning.  Arbitrary in formula (55) are only generalized velocities 𝑞̇𝑖, which we will call 

 virtual generalized velocities.   

Multiplying Newton's law for each particle by its possible velocity, after summing by k, 

we arrive at the theorem of the change in the kinetic energy of the system for possible 

velocities: 

 𝑇̇ = 𝑚𝑘𝒘𝑘 ∙ 𝑽𝑘 = (𝑭𝑘 +𝑵𝑘) ∙ 𝑽𝑘 ,       𝑇 =
 𝑚𝑘𝑉𝑘

𝟐

2
           

 

 𝑚𝑘𝒘𝑘 ∙ (𝑽𝑘𝑒 + 𝑽𝑘𝑟) = (𝑭𝑘 +𝑵𝑘)(𝑽𝑘𝑒 + 𝑽𝑘𝑟) 
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Since the constraints are ideal, the sum of the power of their reactions on any virtual 

velocity 𝑽𝑘𝑟in an arbitrary position of the system is equal to zero  

𝑵𝑘 ∙ 𝑽𝑘𝑟 = 0                
We come to two ratios 

 𝑚𝑘𝒘𝑘 ∙ (𝑽𝑘𝑒 + 𝑽𝑘𝑟) = (𝑭𝑘 +𝑵𝑘)𝑽𝑘𝑒 + 𝑭𝑘𝑽𝑘𝑟 
 

 

 𝑚𝑘𝒘𝑘 ∙ 𝑽𝑘𝑟 = 𝑭𝑘 ∙ 𝑽𝑘𝑟     (58) 

 𝑚𝑘𝒘𝑘 ∙ 𝑽𝑘𝑒 = (𝑭𝑘 +𝑵𝑘) ∙ 𝑽𝑘𝑒     (59) 
 

 

Lagrange equations  

 

Let us show that from the relations (58) follow the Lagrange equations, and the relations (59) 

make it possible to find the reactions of the constraints.  

Substitute in (58) the expression of relative velocities (57), and sum 𝑽𝑘𝑟 

∑[∑ 𝑚𝑘𝒘𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑘

] 𝑞̇𝑖
𝑖

=∑[∑𝑭𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑘

] 𝑞̇𝑖
𝑖

      

Dot product 

 𝑚𝑘𝒘𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

 

is a projection of the acceleration of a particle  𝒘𝑘on a tangent 
𝜕𝒓𝑘

𝜕𝑞𝑖
 of the constraint surface  

The acceleration component tangent to the constraint surface does not depend on the tangent 

velocities 𝑞̇𝑖 (only the normal reactions of ideal constraints depend on them), and is equal to the 

projection of the resultant external forces 𝑭𝑘 on the same direction. 

  Indeed, due to the independence of the generalized velocities, the coefficients in 

parentheses by them are equal: 

∑ 𝑚𝑘𝒘𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑘

=∑𝑭𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑘

      (60) 

Let us show that these relations in generalized coordinates lead to Lagrange equations. 

Here, the right-hand sides are projections of forces on generalized coordinates, so the 

sums of 

𝑄𝑖 =∑𝑭𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

𝑘

≡ 𝑭𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

              (61) 

naturally to call generalized forces.   

 Let us express the left sums in terms of generalized coordinates. 

𝑚𝑘𝒘𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

=  𝑚𝑘𝑽̇𝑘 ∙
𝜕𝒓𝑘
𝜕𝑞𝑖

=
𝑑

𝑑𝑡
( 𝑚𝑘𝑽𝑘 ∙

𝜕𝒓𝑘
𝜕𝑞𝑖

) −  𝑚𝑘𝑽𝑘 ∙
𝑑

𝑑𝑡

𝜕𝒓𝑘
𝜕𝑞𝑖

= 

=
𝑑

𝑑𝑡
( 𝑚𝑘𝑽𝑘 ∙

𝜕𝑽𝑘
𝜕𝑞̇𝑖

) −  𝑚𝑘𝑽𝑘 ∙
𝜕𝑽𝑘
𝜕𝑞𝑖

=
𝑑

𝑑𝑡

𝜕

𝜕𝑞̇𝑖

 𝑚𝑘𝑉𝑘
𝟐

2
−
𝜕

𝜕𝑞𝑖

 𝑚𝑘𝑉𝑘
𝟐

2
= 

=
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
−
𝜕𝑇

𝜕𝑞𝑖
           

Lagrange identities are used here 

𝜕𝒓𝑘
𝜕𝑞𝑖

=
𝜕𝒗𝑘
𝜕𝑞̇𝑖

,              
𝑑

𝑑𝑡

𝜕𝒓𝑘
𝜕𝑞𝑖

=
𝜕𝒗𝑘
𝜕𝑞𝑖

           

Thus, expressions (60) bring us to Lagrange equations. 
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𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
−
𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖             (62) 

Lagrange's equations lead to the differential equations of motion of the system along the 

constraints.  After their integration, the question of the reactions of ideal constraints remains 

open.  Usually, vector equations of relative motion dynamics are used to determine reactions.  

The Lagrange equation is the most universal way to derive differential equations of motion 

of a holonomic system with ideal constraints, including non-stationary ones. 

Advantages and disadvantages of the Lagrange method compared to the Newton method: 

1) The formalism of the Lagrange method, which consists in the fact that the problem is 

reduced to the differentiation of the function T, is convenient, but it does not allow us to see 

physical laws, as in Newton's method. 

2) The Lagrange method to initially exclude the reaction of ideal constraints from the 

consideration, makes possible to quickly obtain differential equations of motion of the 

system.  To determine these reactions after integrating the equations, however, we will have 

to return to Newton's method. 
 

Example of solving the problem  

In order to obtain the differential equations of 

motion of an elliptic pendulum by Newton's method, it 

would be necessary:  

• take into account the reaction of the ideal constraint 

in the form of tension of the thread,  

• make one equation of the translatory motion of the 

body 𝑚1, and two equations of the plane motion of the 

particle 𝑚2.  

• Of the three equations, two will be differential and 

one will serve to determine the tension of the thread. 

Let's find differential equations using the Lagrange 

method:  

 The system has two degrees of freedom, corresponding to the generalized coordinates x, φ and 

Lagrange equations 

𝑑

𝑑𝑡

𝑑𝑇

𝑑𝑥̇
−
𝑑𝑇

𝑑𝑥
= 𝑄𝑥                    

𝑑

𝑑𝑡

𝑑𝑇

𝑑𝜑̇
−
𝑑𝑇

𝑑𝜑
= 𝑄𝜑                    

 We found generalized forces earlier 

𝑄𝑥 = 0 𝑄𝜑 = −𝑚2𝑔𝑙𝑆𝑖𝑛𝜑 

The kinetic energy of the system T is sought at the moment when the system passes the 

equilibrium position 

𝑇 =
1

2
[𝑚1𝑥̇

2 +𝑚2(𝑥̇ + 𝑙𝜑)̇
2] 

T is independent of x:     
𝑑𝑇

𝑑𝑥
= 0,     and    𝑄𝑥 = 0 

𝑑𝑇

𝑑𝑥̇
= (𝑚1 +𝑚2)𝑥̇ + 𝑚2𝑙𝜑̇𝐶𝑜𝑠𝜑 = 𝐶𝑜𝑛𝑠𝑡 

𝑚2g 

x 

𝜑 
𝑚1g 𝑙 

δ𝜑 

δx 
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Note that this integral expresses the expected fact of conservation of the system 

momentum  along the x-axis.   

The first differential equation of motion of the system is obtained after differentiation 

(𝑚1 +𝑚2)𝑥̈ + 𝑚2𝑙(𝜑̈𝐶𝑜𝑠𝜑 − 𝜑̇
2𝑆𝑖𝑛𝜑) = 0 

 To obtain the second equation, let's find the corresponding derivatives. 

𝑑𝑇

𝑑𝜑̇
= 𝑚2𝑙(𝑙𝜑̇ + 𝑥̇𝐶𝑜𝑠𝜑) 

𝑑

𝑑𝑡

𝑑𝑇

𝑑𝜑̇
= 𝑚2𝑙(𝑙𝜑̈ + 𝑥̈𝐶𝑜𝑠𝜑 − 𝑥̇𝜑̇𝑆𝑖𝑛𝜑) 

𝑑𝑇

𝑑𝜑
= −𝑚2𝑙𝑥̇𝜑𝑆𝑖𝑛𝜑̇  

When substituted into the second Lagrange equation, last expressions are reduced, and we 

find the second differential equation of motion of the system 

𝑙𝜑̈ + 𝑥̈𝐶𝑜𝑠𝜑 = −𝑔𝑆𝑖𝑛𝜑 

When fixing the body 𝑚1, we obtain the known equation of oscillations of a mathematical 

pendulum m2 

𝑙𝜑̈ = −𝑔𝑆𝑖𝑛𝜑 

Set of control problems, to solve by the of Newton and Lagrange methods, can be found here:   

https://disk.yandex.ru/d/MgeI-bf-5ddnOg 

 

Example of deriving the differential equation of motion of a system with the 1st degree of 

freedom by Newton and Lagrange methods 

  The three bodies are connected by a thread. The roller of mass 𝑚1 moves without 

slippage, but with rolling resistance (coefficient k), and road 

resistance (𝑘1).  Radius of inertia of the roller relative to the 

central axis ρ. Weight 𝑚1 slips with friction (coefficient f) 

1. Apply a force or moment to one of the bodies so that 

the threads are stretched and the system moves from a state 

of rest in the direction of the force (moment). 

2. Deduce the differential equation of motion of the 

system using the Lagrange method.  

3. Write the differential equations of motion of each of 

the bodies using Newton's method and the ratio of the 

accelerations of the bodies.  

4. Check for yourself that it gives the same differential equation of motion of the system as 

by the Lagrange method. 

1. A counterclockwise moment can be applied to block 1. Nothing can be applied to body 2, 

because one of the threads may weaken.  Let's apply to the body 3 a force F, directed 

downwards along an inclined plane.   Let us assume that the system moves from a state of rest 

in the direction of the force F  

2. Lagrange 

α 

m3g 

m2g 

m1g 

https://disk.yandex.ru/d/MgeI-bf-5ddnOg
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2.1 The position of the system can be 

defined by several generalized coordinates: 

the rotation angles φ and φ1, the s 

coordinate of the center of the roller 2, the x 

coordinate of  the body 3.   The system will 

stop if any of the listed coordinates is fixed 

with the threads stretched.  This means that 

the system has one degree of freedom, and 

only one of the generalized coordinates is 

independent.  Let's choose the angle of 

rotation φ roller 2 for an independent 

coordinate, and agree on the directions of 

all coordinates so that they increase 

simultaneously. 

       Let's write down a single Lagrange 

equation  
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝜑̇
−
𝜕𝑇

𝜕𝜑
= 𝑄𝜑 

2.2    Let us find the kinetic energy of the system as the sum of the energies in the actual 

motion of the system corresponding to the type of motion of the bodies: rotational for 

body 1, plane for body 2, and translatory for body 3.   

𝑇 =
𝐽1
2
𝜑̇1

2 +
𝑚2
2
𝑠̇2 +

𝐽2
2
𝜑̇2 +

𝑚3
2
𝑥̇2 

        Moments of inertia of bodies 1 (let it be a solid disk) and 2: 

𝐽1 =
𝑚1
2
𝑟1
2;          𝐽2 = 𝑚2𝜌

2 

   Since the system has one degree of freedom, we express all velocities in terms of 

generalized velocity 𝜑̇.  In the roller, the velocities are linearly dependent on the distance to 

the ICV (R). 

𝑠̇ = 𝑅𝜑̇;       𝑥̇ = (𝑅 − 𝑟)𝜑̇;               
Top thread velocity 

𝑣 = (𝑅 + 𝑟)𝜑̇ 

Angular velocity of block 1: 

𝜑̇1 =
𝑣

𝑟1
=
𝑅 + 𝑟

𝑟1
𝜑̇ 

By substituting the formulas of kinematic constraints, we obtain the expression of 

kinetic energy in terms of the generalized velocity 𝜑̇ 

𝑇 =
𝑚1
4
𝑟1
2 (
𝑅 + 𝑟

𝑟1
)
2

𝜑̇2 +
𝑚2
2
𝑅2 𝜑̇2 +

𝑚2𝜌
2

2
𝜑̇2 +

𝑚3
2
(𝑅 − 𝑟)2𝜑̇2 = 

=
1

2
[
𝑚1
2
(𝑅 + 𝑟)2 +𝑚2(𝑅

2 + 𝜌2) + 𝑚3(𝑅 − 𝑟)
2] 𝜑̇2 

𝑇 =
𝐽

2
𝜑̇2 

The constant value in square brackets can be called the moment of inertia J of the system 

reduced to the axis of the roller. 

The left side of the Lagrange equation takes the form: 
𝜕𝑇

𝜕𝜑
= 0;     

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝜑̇
= 𝐽𝜑̈ 

2.3   Let us find the generalized force 𝑄𝜑as a coefficient at the generalized velocity 𝜑̇ in the 

expression of the possible power of the active forces.    Reactions of non-ideal constraints 

can be conventionally considered as unknown active forces.  Let us depict all the external 

F 

𝜌 

Ftr 

𝑵𝟑 

𝑵𝟐 

α 

𝑚3g 

MTC 

φ 
𝑭𝒄 

F*tr 
𝑚2g 

𝑚1𝒈
g 

𝜑1 

s 

x 

𝑹𝟏  

R 

r 

𝑇1 

𝑇2 
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forces of the system. The reaction of the "soft" road to the "soft" wheel is reduced to the 

normal reaction 𝑁2, the frictional force Ftr, the rolling friction torque Mtc,  

𝑀тк = 𝑁2𝑘 = 𝑘𝑚2𝑔𝐶𝑜𝑠 ∝;                  
directed against the rotation of the wheel, and the drag force Fc 

𝐹𝒄 = 𝑁2
𝑘1
𝑅
=
𝑘1
𝑅
𝑚2𝑔𝐶𝑜𝑠 ∝ 

directed against the movement of its center. 

The sliding friction force F*tr is related with the normal reaction N3 by  Coulomb's 

law 

𝐹тр
∗ = 𝑓𝑁3 = 𝑓𝑚3𝑔𝐶𝑜𝑠 ∝ 

The power of forces in rotational and plane motion will be calculated as the product of 

the moment of forces relative to the center of velocities and the angular velocity of the body.  

The power is positive when the directions of the multipliers coincide. 

Let's list the forces that do not have power 

𝑁(𝑅1,𝑚2𝑔) = 0      the point of application is stationary 

𝑁(𝐹тр, 𝑁2) = 0      there is no moment relative to ICV 

𝑁(𝑁3) = 0        perpendicular to the velocity 

𝑁(𝑇1, 𝑇2) = 0            the thread is inextensible  
Give the system a possible generalized velocity.  It is determined only by constraints, has 

nothing to do with actual motion, and can have an arbitrary direction and module.  In order not to 

make a mistake in the sign, we always give a positive possible velocity   𝜔𝑧 > 0. 
Since real velocities belong to a set of possible velocities, it is convenient to use the found 

ratios of real velocities, considering them positive. 

Let's calculate the power of all forces at positive velocities:  

𝑁 = 𝑚2𝑔𝑠̇𝑆𝑖𝑛 ∝ +𝑚3𝑔𝑥̇𝑆𝑖𝑛 ∝ +𝐹𝑥̇ −𝑀тк𝜑̇ − 𝐹𝑐 𝑠̇ − 𝐹тр
∗ 𝑥̇ 

Substituting here the velocity ratios, we find  

𝑁 = [𝑔{(𝑚2𝑅 +𝑚3(𝑅 − 𝑟)}𝑆𝑖𝑛 ∝ +𝐹(𝑅 − 𝑟) − 𝑔(𝑘 + 𝑘1)𝑚2𝐶𝑜𝑠 ∝ −𝑔𝑓𝑚3𝐶𝑜𝑠
∝ (𝑅 − 𝑟)]𝜑̇ = 𝑄𝜑𝜑̇ 

A constant quantity in square brackets is a generalized force 𝑄𝜑that has the dimension of a 

moment. 

 

2.4 From the Lagrange equation: 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝜑̇
−
𝜕𝑇

𝜕𝜑
= 𝑄𝜑 

we obtain the differential equation of uniformly accelerated motion of the system: 

𝐽𝜑̈ = 𝑄𝜑 

 

3. Newton 

Let us make differential equations of motion for each of the bodies of the system. To do this, 

mentally cut the threads and introduce their tensions 𝑇1 and 𝑇2. 

 

Block  𝒎𝟏 

Rotates. Differential equation of rotation 

𝐽1𝜑̈1 = 𝑇1𝑟1 
Rink 𝒎𝟐 

Plane motion. Making three equations 

𝑚2𝑠̈ = 𝑚2𝑔𝑆𝑖𝑛𝛼 + 𝑇2 − 𝑇1 − 𝐹𝑐 − 𝐹тр 

0 = 𝑁2 −𝑚2𝑔𝐶𝑜𝑠𝛼 

𝐽2𝜑̈ = 𝐹тр𝑅 − (𝑇1 + 𝑇2)𝑟 − 𝑀тк  

(moments relative to the center of the rink!) 
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Body  𝒎𝟑 

Translatory motion.  Newton's equations: 

𝑚3𝑥̈ = 𝐹 +𝑚3𝑔𝑆𝑖𝑛𝛼 − 𝑇2 − 𝐹тр
∗  

0 = 𝑁3 −𝑚3𝑔𝐶𝑜𝑠𝛼 

There are 9 unknowns 𝜑̈1𝑇1𝑠̈𝑇2𝑁2𝜑̈𝐹тр𝑥̈𝑁3 in the resulting 6 equations:                   

The missing 3 equations are found by integrating the equations of kinematic relations  

𝑠̈ = 𝑅𝜑̈;       𝑥̈ = (𝑅 − 𝑟)𝜑̈;     𝜑̈1 =
𝑅 + 𝑟

𝑟
𝜑̈ 

 

Analytical equations for determining the reactions of ideal constraints 

Let us show that the relations (59) make it possible to find the reactions of constraints 

analytically, with the function of the kinetic energy T.  Let us write (59) in the form: 

 𝑚𝑘𝒘𝑘 ∙ (𝑽𝒌 − 𝑽𝑘𝑟) = (𝑭𝑘 +𝑵𝑘) ∙ 𝑽𝑘𝑒             

Taking into account the Lagrange equations, and the fact that  𝑚𝑘𝒘𝑘 ∙ 𝑽𝑘 = 𝑇̇, we get 

 𝑚𝑘𝒘𝑘 ∙ (𝑽𝒌 − 𝑽𝑘𝑟) = 𝑇̇ − (
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
−
𝜕𝑇

𝜕𝑞𝑖
) 𝑞̇𝑖 = 𝑇̇ −

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
𝑞̇𝑖 + 

𝜕𝑇

𝜕𝑞𝑖
𝑞̇𝑖 =

= 𝑇̇ −
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
𝑞̇𝑖) +

𝜕𝑇

𝜕𝑞̇𝑖
𝑞̈𝑖 + 

𝜕𝑇

𝜕𝑞𝑖
𝑞̇𝑖 = 2𝑇̇ −

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
𝑞̇𝑖) −

𝜕𝑇

𝜕𝑡
= 

= 2𝑇̇ − 2𝑇̇2 − 𝑇̇1 −
𝜕𝑇

𝜕𝑡
= 2𝑇̇2 + 2𝑇̇1 + 2𝑇̇0 − 2𝑇̇2 − 𝑇̇1 −

𝜕𝑇

𝜕𝑡
= 𝑇̇1 + 2𝑇̇0 −

𝜕𝑇

𝜕𝑡
        

Since 

𝜕𝑇

𝜕𝑞̇𝑖
𝑞̈𝑖 + 

𝜕𝑇

𝜕𝑞𝑖
𝑞̇𝑖 = 𝑇̇ −

𝜕𝑇

𝜕𝑡
 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
𝑞̇𝑖) =

𝑑

𝑑𝑡
(
𝜕𝑇2
𝜕𝑞̇𝑖

𝑞̇𝑖 +
𝜕𝑇1
𝜕𝑞̇𝑖

𝑞̇𝑖) = 2𝑇̇2 + 𝑇̇1 

Here it is taken into account that in nonstationary relations, kinetic energy is the sum of 

quadratic, linear and zero forms of generalized velocities. 

𝑇 =∑(𝑇𝑘2 + 𝑇𝑘1 + 𝑇𝑘0)                

Thus, 

 

 for each of the particles of the system 

(𝑭𝑘 +𝑵𝑘) ∙ 𝑽𝑘𝑒 = 𝑇̇𝑘1 + 2𝑇̇𝑘0 −
𝜕𝑇𝑘
𝜕𝑡
         (63) 

From these ratios, it is possible to determine the reactions𝑵𝑘 of external and internal ideal 

constraints.    
 

 

1. Examples 

1.1. Non-stationary constraints of general type.    

 The particle of mass m moves in the plane x,y according to a law in which the generalized 

coordinate q along a moving plane curve is distinguished 

𝑥 = 𝑥(𝑞, 𝑡),    𝑦 = 𝑦(𝑞, 𝑡)              
For example, a particle moves along an ellipse, the semi-axes of which change in time  

𝑥 = 𝑎(𝑡)𝑆𝑖𝑛
𝑞

𝑎(𝑡)
,       𝑦 = 𝑏(𝑡)𝐶𝑜𝑠

𝑞

𝑏(𝑡)
            

The kinetic energy of a particle is the sum of three forms of generalized velocity 

𝑇(𝑞̇, 𝑞, 𝑡) =
𝑚

2
(𝑥̇2 + 𝑦̇2) = 𝑇2 + 𝑇1 + 𝑇0            

𝑇2 = 𝐴2(𝑞, 𝑡)𝑞̇
2,      𝑇1 = 𝐴1(𝑞, 𝑡)𝑞̇,         𝑇0 = 𝐴0(𝑞, 𝑡) 
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Derived forms: 

𝑇̇1 = 𝐴1𝑞̈ +
𝜕𝐴1
𝜕𝑞

𝑞̇ +
𝜕𝐴1
𝜕𝑡
,       𝑇̇0 = 

𝜕𝐴0
𝜕𝑞

𝑞̇ +
𝜕𝐴0
𝜕𝑡
,       

𝜕𝑇

𝜕𝑡
=
𝜕𝐴2
𝜕𝑡
𝑞̇2 +

𝜕𝐴1
𝜕𝑡
𝑞̇ +

𝜕𝐴0
𝜕𝑡
  

From the power equation 

𝑇̇1 + 2𝑇̇0 −
𝜕𝑇

𝜕𝑡
= 𝐴1𝑞̈ −

𝜕𝐴2
𝜕𝑡
𝑞̇2 + 2

𝜕𝐴0
𝜕𝑞

𝑞̇ +
𝜕(𝐴1 + 𝐴0)

𝜕𝑡
= 𝑵 ∙

𝜕𝒓

𝜕𝑡
      

Finding the Connection Reaction 

𝑁𝑥
𝜕𝑥

𝜕𝑡
+ 𝑁𝑦

𝜕𝑦

𝜕𝑡
= 𝐴1𝑞̈ −

𝜕𝐴2
𝜕𝑡
𝑞̇2 + 2

𝜕𝐴0
𝜕𝑞

𝑞̇ +
𝜕(𝐴1 + 𝐴0)

𝜕𝑡
 

3.2 The particle of mass m travels frictionlessly along the chord of a disk rotating in the 

horizontal plane with a variable angular velocity ω (t).  Find the horizontal reaction R of the  

guide. 

3.2.1 General Formula 

       𝑹 ∙ 𝒗𝑒 = 𝑇̇1 + 2𝑇̇0 −
𝜕𝑇

𝜕𝑡
 

𝑣𝑒 = 𝜔√𝑎2 + 𝑥2              𝑹 ∙ 𝒗𝑒 = 𝑅𝜔𝑥        
 

𝑇 =
𝑚

2
[𝑥̇2 + 𝜔2(𝑎2 + 𝑥2) + 2𝜔𝑥̇𝑎]     

𝑇1 = 𝑚𝜔𝑥̇𝑎,           𝑇0 =
𝑚

2
𝜔2(𝑎2 + 𝑥2),     

𝑇̇1 = 𝑚𝑎(𝜔𝑥̈ + 𝜔̇𝑥̇)              𝑇̇0 = 𝑚𝑥𝑥̇𝜔
2 +

𝑚𝜔𝜔̇(𝑎2 + 𝑥2) 
𝜕𝑇

𝜕𝑡
= 𝑚𝜔𝜔̇(𝑎2 + 𝑥2) +  𝑚𝜔̇𝑥̇𝑎 

For now 

𝑅𝑥 = 2𝑚𝑥𝑥̇𝜔 +  𝑚𝜔̇(𝑎2 + 𝑥2) + 𝑚𝑎𝑥̈  
Taking into account the differential equation of motion 

𝑥̈ + 𝜔̇𝑎 − 𝜔2𝑥 = 0 

Get 

𝑅 = 𝑚[2𝜔𝑥̇ + 𝜔̇𝑥 + 𝑎𝜔2]       
3.2.2 . Let's free the coordinate φ   

𝑇 =
𝑚

2
[𝑥̇2 + 𝜑̇2(𝑎2 + 𝑥2) + 2𝜑̇𝑥̇𝑎] 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝜑̇
) = 𝑚[𝜑̈(𝑎2 + 𝑥2) + 2𝜑̇𝑥̇𝑥 + 𝑎𝑥̈] ,        

𝜕𝑇

𝜕φ
= 0 

Generalized reaction force (moment) by φ: 

𝑄𝜑  =  𝑅𝑥 

We get the same result 

𝑅𝑥 = 2𝑚𝑥𝑥̇𝜑̇ +  𝑚φ̈(𝑎2 + 𝑥2) + 𝑚𝑎𝑥̈  

𝑅 = 𝑚[2𝜑̇𝑥̇ + φ̈𝑥 + 𝑎𝜑̇2]       
After integrating the equation of relative motion, we find the reaction R from the functions ω 

(t) and x(t).  

 A similar result can be obtained using the basic equation of the dynamics of the relative 

motion of a particle.   

 

3.3 Internal reactions. 

 For a part of the system, the rest of it is a non-stationary connection.  Therefore, the reaction 

of the discarded part can be found in the following ways:   

x 

m 

R 

ω(t) 
a 

0 

𝒗𝑒 
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  Find the tension of the thread S connecting the bodies in an elliptical pendulum. 

 3.3.1  General formula. 

Kinetic Energy of Mass 𝑚2 

𝑇′ =
𝑚2
2
(𝑥̇2 + 𝑙2𝜑̇2 + 2𝑙𝑥̇𝜑̇𝐶𝑜𝑠𝜑) 

Here it is considered as a given function of the velocity of 

nonstationary communication, so𝑥̇  

𝑇𝑜
′ =

𝑚2
2
𝑥̇2,     𝑇1

′ = 𝑚2𝑙𝜑̇𝑥̇ 𝐶𝑜𝑠𝜑 

𝑇̇𝑜
′ = 𝑚2𝑥̇𝑥̈,     𝑇̇1

′ = 𝑚2𝑙[(𝜑̇𝑥̈ + 𝑥̇𝜑̈)𝐶𝑜𝑠𝜑 − 𝜑̇
2𝑥̇𝑆𝑖𝑛𝜑],    

 
𝜕𝑇

𝜕𝑡
= 𝑚2(𝑥̇𝑥̈ + 𝑙𝜑̇𝑥̈𝐶𝑜𝑠𝜑) 

2𝑇̇𝑜
′ + 𝑇̇1

′ −
𝜕𝑇

𝜕𝑡
= −𝑆𝑥̇𝑆𝑖𝑛𝜑 

𝑆𝑆𝑖𝑛𝜑 = 𝑚2[𝑙(𝜑̇
2𝑆𝑖𝑛𝜑 − 𝜑̈𝐶𝑜𝑠𝜑) − 𝑥̈] 

3.3.2  Free the x-coordinate  The reaction of the rod S is considered to be an unknown active 

force.   Lagrange equation 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑥̇
) = 𝑚2[𝑥̈ + 𝑙(𝜑̈𝐶𝑜𝑠𝜑 − 𝜑̇

2𝑆𝑖𝑛𝜑)],     
𝜕𝑇

𝜕𝑥
= 0,    𝑄𝑥  = −𝑆𝑆𝑖𝑛𝜑  

 leads to the same result: 

𝑆𝑆𝑖𝑛𝜑 = 𝑚2[𝑙(𝜑̇
2𝑆𝑖𝑛𝜑 − 𝜑̈𝐶𝑜𝑠𝜑) − 𝑥̈]  

  The obvious term enters the right side of the solution through accelerations.  This 

expression gives the solution for 𝑚2𝑔.  To find the tension of the filament at 𝜑 ≠ 0 , the 

system must be given a constant vertical velocity, as is done in the following example.  𝜑 = 0 

 

3.4 Reactions of stationary constraints. 

 With stationary bonds, the reactions of ideal bonds do not create power.  To find reactions, 

it is possible to artificially make the bonds nonstationary by giving them a constant velocity in 

the direction of the bond.  At the same time, the frame of reference remains inertial, and the 

reactions of the bonds do not change.  

 Let us find the normal reaction R acting on the body of the elliptulum pendulum.𝑚1 

Let's give the base a vertical constant velocity.  Kinetic energy of the system𝒗𝑒 

𝑇 =
𝑚1
2
(𝑥̇2 + 𝑣𝑒

2) +
𝑚2
2
[(𝑥̇ + 𝑙𝜑̇𝐶𝑜𝑠𝜑)2 + (𝑣𝑒 + 𝑙𝜑̇𝑆𝑖𝑛𝜑)

2] 

3.4.1 General Formula 

𝑇1 = 𝑚2𝑣𝑒𝑙𝜑̇𝑆𝑖𝑛𝜑,          𝑇𝑜 =
1

2
(𝑚1 +𝑚2)𝑣𝑒

2 = 𝐶𝑜𝑛𝑠𝑡 

𝑇̇1 = 𝑚2𝑙𝑣𝑒(𝜑̈𝑆𝑖𝑛𝜑 + 𝜑̇
2𝐶𝑜𝑠𝜑) = [𝑅 − (𝑚1 +𝑚2)𝑔]𝑣𝑒 

𝑅 = (𝑚1 +𝑚2)𝑔 + 𝑚2𝑙(𝜑̈𝑆𝑖𝑛𝜑 + 𝜑̇
2𝐶𝑜𝑠𝜑) 

3.4.2 Release the coordinate y (.𝑦̇ = 𝑣𝑒 , 𝑦̈ = 0)  

𝑇 =
𝑚1
2
(𝑥̇2 + 𝑦̇2) +

𝑚2
2
[(𝑥̇ + 𝑙𝜑̇𝐶𝑜𝑠𝜑)2 + (𝑦̇ + 𝑙𝜑̇𝑆𝑖𝑛𝜑)2] 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑦̇
) = (𝑚1 +𝑚2)𝑦̈ + 𝑚2𝑙(𝜑̈𝑆𝑖𝑛𝜑 + 𝜑̇

2𝐶𝑜𝑠𝜑),    
𝜕𝑇

𝜕y
= 0,    𝑦̈ = 0 

Generalized strength according to y:  𝑄𝑦  =  𝑅 − (𝑚1 +𝑚2)𝑔 

We come to the same result: 

𝑅 = (𝑚1 +𝑚2)𝑔 + 𝑚2𝑙(𝜑̈𝑆𝑖𝑛𝜑 + 𝜑̇
2𝐶𝑜𝑠𝜑) 

This result can be obtained from the theorem on the motion of the center of mass.   

 

x 

𝜑 

R 

𝑚1𝑔 

𝑚2𝑔 

𝒗𝑒 

l 
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3.5   Let us find the reaction of the filament R of the pendulum of mass m and the variable 

length l(t). 

 3.5.1 General Formula 

𝑇 =
𝑚

2
(𝑙2̇ + 𝑙2𝜑̇2) 

𝑇1 = 0,    𝑇𝑜 =
𝑚

2
𝑙2̇,     𝑇̇𝑜 = 𝑚𝑙𝑙̇̈ ,     

𝜕𝑇

𝜕𝑡
=  𝑚𝑙𝑙̇̈ + 𝑚𝑙𝑙𝜑̇̇2  

2𝑇̇0 + 𝑇̇1 −
𝜕𝑇

𝜕𝑡
= (𝑹 +𝑚𝒈) ∙ 𝒗𝑒 

2𝑚𝑙𝑙̇̈ −  𝑚𝑙𝑙̇̈ − 𝑚𝑙𝑙𝜑̇̇2 = 𝑅𝑙𝑙̇ + 𝑚𝑔𝑙𝐶̇𝑜𝑠𝜑 

𝑅𝑙 = 𝑚(𝑙̈ − 𝑙𝜑̇
2 − 𝑔 𝐶𝑜𝑠𝜑) 

 3.5.2 Free the coordinate   𝑙 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑙̇
) = 𝑚𝑙̈ ,           

𝜕𝑇

𝜕𝑙
= 𝑚𝑥𝜑̇2              𝑄𝑙  = 𝑅𝑙 +𝑚𝑔𝐶𝑜𝑠𝜑  

We come to the same result 

𝑅𝑙 = 𝑚(𝑙̈ − 𝑙𝜑̇
2 − 𝑔 𝐶𝑜𝑠𝜑) 

 This result can also be obtained with the help of the basic equation of the dynamics of the 

relative motion of a particle.   

 Note that freeing the coordinates leads to a result faster than the general formula.  But this 

method is applicable only to constraints with a finite number of degrees of freedom. 

 

 

CONSERVATIVE SYSTEMS 

Definition and properties of a potential force field. 

A force field is a three-dimensional space, at each point of which a force function 𝑭(𝒓; 𝑡) 
is given. 

Consider a stationary force field given in Cartesian coordinates by x, y, z functions:  

𝐹𝑥(𝑥, 𝑦, 𝑧);      𝐹𝑦(𝑥, 𝑦, 𝑧);      𝐹𝑧(𝑥, 𝑦, 𝑧) (67) 

As has been shown; in order to calculate the final work of the field force, it is necessary 

to know the trajectory of the particle.  Among field forces, there is a class of potential force 

fields for which the final work of the force is determined only by the initial and final position of 

the particle and does not depend on the trajectory.  

A force field (67) is said to be potential if there exists a potential energy function 

П(𝑥, 𝑦, 𝑧),such that 

𝐹𝑥 = −
𝜕П

𝜕х
;   𝐹𝑦 = −

𝜕П

𝜕𝑦
;  𝐹𝑧 = − 

𝜕П

𝜕𝑧
 

Let the field (67) be given.  How to check if it is potential?  We believe that the potential 

energy П is a continuous, doubly differentiable function of coordinates. Then you can use the 

property: the order in which the mixed derivative is taken does not affect the result: 

𝜕2П

𝜕𝑥𝜕𝑦
=

𝜕2П

𝜕𝑦𝜕𝑥
 ,         

𝜕2П

𝜕𝑧𝜕𝑦
=

𝜕2П

𝜕𝑦𝜕𝑧
 ,         

𝜕2П

𝜕𝑥𝜕𝑧
=

𝜕2П

𝜕𝑧𝜕𝑥
 

 Hence the criteria for the potentiality of a silent field 

R 

l(t) 

m

g 

φ 

l 
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𝜕𝐹𝑥

𝜕𝑦
=
𝜕𝐹𝑦

𝜕𝑥
       

𝜕𝐹𝑦

𝜕𝑧
=
𝜕𝐹𝑧

𝜕𝑦
      

𝜕𝐹𝑧

𝜕𝑥
=
𝜕𝐹𝑥

𝜕𝑧
 

  

  Properties of the work of potential forces. 

1) The elementary work of the potential force is equal to minus the potential energy 

differential. Really  

𝑑’𝐴 = 𝑭 • 𝑑𝒓 = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 =   ̶  (
𝜕П

𝜕𝑥
𝑑𝑥 +

𝜕П

𝜕𝑦
𝑑𝑦 + 

𝜕П

𝜕𝑧
𝑑𝑧) = −𝑑П 

 The following properties follow from this. 

2) The final work of the potential force depends only on the initial and final position of the 

particle 

А12 = ∫ 𝑑’𝐴 = −

1−2

∫𝑑П = П1 − П2

2

1

 

3) Work in a vicious circle is equal to zero:  

П1 = П2,   therefore  Ao=0 

 

Calculation of potential energy. The law of conservation of total mechanical energy. 

The surface on which П retains the value is called equipotential:  

П (𝑥, 𝑦, 𝑧)  = С1 =  𝑐𝑜𝑛𝑠𝑡 

Let us find out the direction of F in relation to the equipotential surface.  Let the particle 

travel along the equipotential surface. According to the property of the work, the potential force 

F does not perform work since П = С1 

𝑑’𝐴 =  𝑭 •  𝑑𝒓 =  0 

Since 𝑑𝒓 is directed arbitrarily in the tangent plane to the surface, the force is directed 

perpendicular to the equipotential surfaces П = С1 

 On the other hand 

𝑭 = − (
𝜕П

𝜕𝑥
𝒊 +

𝜕П

𝜕𝑦
𝒋 + 

𝜕П

𝜕𝑧
𝒌) = −𝒈𝒓𝒂𝒅 П 

This means that the force is directed in the direction of decreasing П. 

According to the properties of differentiation, both functions П(х, у, 𝑧) 𝑎𝑛𝑑 П(х, у, 𝑧)  +

 С, where C is an arbitrary additive constant, determine the same force field.  The potential energy 

is said to be determined to the accuracy of the additive constant.   

Let's choose a zero level of potential energy. Then move a particle from an arbitrary 

position М(х, у, 𝑧) to any point of the zero level and calculate the work of the force: 

𝐴𝑀М𝑜 =  П(х, у, 𝑧) 
Hence the rule for calculating potential energy functions:  

The function 𝜫 (x,y,z) is computed as  

the work of the potential force to move from an arbitrary point M(x,y,z) to the zero level 
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. 

Examples: 

3) Constant force 𝑭 =  𝒄𝒐𝒏𝒔𝒕:   
А12 =  𝑭 •  (𝒓𝟐 − 𝒓𝟏) = 𝑭 • 𝜟𝒓 

4) Gravity. This is a particular example of constant force:  

A field is homogeneous if  

𝑭 =  𝑚𝒈,          𝒈 = 𝒄𝒐𝒏𝒔𝒕 
Direct the axis z vertically upwards, then  

𝐹𝑥 = 𝐹𝑦 = 0    𝐹𝑧  =  − 𝑚𝑔 

All surfaces 𝑧 =  𝑐𝑜𝑛𝑠𝑡 are equipotential. Therefore  

А12  =  𝐹𝑧 (𝑧1 − 𝑧2)  =  ± 𝑚𝑔ℎ 

The work is positive if the particle drops. 

5) Straight Linear Spring:  

Natural length of undeformed spring is 𝑙0 . When the 

length is changed on what is called spring deformation 𝛥 =
 𝑙 − 𝑙0, elastic force 𝑭в is generated. It always tends to 

restore the undeformed state of the spring, so it is called the 

restoring force.,.   

A spring is linear if the force 𝑭вis linearly dependent on 

the deformation: 

𝐹в= c Δ 

The coefficient c (n/m) is called the spring stiffness.  If the beginning of the x-axis is chosen in 

the position where 𝛥 = 0, then  

𝐹вх = − с х 

Elementary work of 𝑭в 

𝑑’𝐴 =  𝐹в𝑥 𝑑𝑥 =  − 𝑐𝑥 𝑑𝑥 

The final work of 𝑭в 

𝐴12 = − 𝑐 ∫ 𝑥𝑑𝑥
𝑥2

𝑥1

=
1

2
𝑐(𝑥1

2 − 𝑥2
2) 

Coordinate can be replaced by their deformation: 

𝐴12 = 
1

2
𝑐(Δ1

2 − Δ2
2) 

A system is called conservative if all the forces acting on it are potential. 

Theorem on the change of kinetic energy for a conservative system in integral form:  

Т2 − Т1 = А12 = П1 − П2   или  Т2 + П2 = Т1 + П1 

The total mechanical energy of a system is the sum of its kinetic and potential energies:  

𝐸 = 𝑇 + П 

As we can see that the total mechanical energy of the conservative system is conserved 

𝐸 =  𝑐𝑜𝑛𝑠𝑡 
Suppose that in addition to potential forces, there are non-potential forces acting on the system, 

then:  

𝑑𝑇 = 𝑑’𝐴пот + 𝑑’𝐴не пот = −𝑑П + 𝑑’𝐴не пот 

Dividing by dt, we find that  

the speed of change of the total mechanical energy  

is equal to the power of the non-potential forces. 

𝑑𝐸/𝑑𝑡 = 𝑁не пот 

For example, in the presence of a viscous drag force 

r1 

r2 

Δr 

F 

x y 

z 

h 

w Fâ 

mg l0 
x 

y 

x 0 
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𝑭сопр = − 𝛽𝑽  𝛽 =  𝐶𝑜𝑛𝑠𝑡 

Total mechanical energy decreases at a speed 

𝑑𝐸 / 𝑑𝑡 =  − 𝛽𝑽 • 𝑽 =  − 𝛽𝑉2 

Generalized forces.  

Static principle of possible velocities for a conservative system. 

Consider a conservative non free system with potential energy П (𝑥, 𝑦, 𝑧) and generalized 

coordinates 𝑞1. . . . 𝑞𝑙.  Let's find the generalized forces of the system by definition , 

Qi =∑𝐹k ∙
∂𝒓k
∂𝑞i

= −∑(
∂П

∂x

∂𝑥

∂𝑞i
+
∂П

∂y

∂𝑦

∂𝑞i
+
∂П

∂z

∂𝑧

∂𝑞i
) = −

∂П

∂𝑞i
 

Example: elliptical pendulum  

Let's take the position 𝑥 = 0, 𝜑 = 0 as the zero level of potential energy and calculate the 

work when the system returns to the origin 

П =  𝑚2𝑔𝑙 (1 −  𝐶𝑜𝑠 𝜑) 

П does not depend on x, so 𝑄𝑥 = 0 

𝑄𝜑  =  − 𝜕П/𝜕𝜑 =  − 𝑚2𝑔𝑙 𝑆𝑖𝑛 𝜑 

Static principle of possible velocties:  

𝛿𝐴 = ∑𝑄𝑖𝛿𝑞𝑖 = 0 

Since the generalized possible displacements 𝛿𝑞𝑖 are independent, the principle can be read 

as follows: 

In the equilibrium position, all generalized forces turn to zero. 

𝑄𝑖 = 0  (𝑖 = 1,2, . . . , 𝑙) 
This means that 

In the equilibrium position, the potential energy of a conserved system has an extremum 

𝜕П/𝜕𝑞𝑖 = 0(𝑖 = 1,2, . . . , 𝑙) 
Consequently, finding the equilibrium positions of a conservative system is reduced to finding 

extremes of the function П. 

 

Lagrange equation for conservative systems. Cyclic coordinates and integrals. 

Consider a conservative non free system with l degrees of freedom.  Potential energy 

П(𝑞1. . . 𝑞𝑙) determines generalized forces   

𝑄𝑖  =  −
𝜕П

𝜕𝑞𝑖
     (𝑖 = 1,2, . . . , 𝑙) 

Lagrange equations take the form 

𝑑

𝑑𝑡

𝜕(𝑇−П)

𝜕𝑞̇𝑖
−
𝜕(𝑇−П)

𝜕𝑞𝑖
= 0 (𝑖 = 1,2, . . , 𝑙) 

Here it is taken into account that the potential energy does not depend on generalized velocities 

∂П

∂q̇i 
= 0  (𝑖 = 1,2, . . , 𝑙) 

Let's write the Lagrange equations using the Lagrange function  
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𝐿 =  𝑇 − П 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= 0      (𝑖 = 1,2, . . , 𝑙) 

The coordinate 𝑞𝜎 is called cyclic if the Lagrange function does not depend on it 

𝜕𝐿/𝜕𝑞𝜎 = 0 

The Lagrange equation with the number σ acquires the form 

𝑑

𝑑𝑡

𝑑𝐿

𝑑𝑞̇σ
= 0 

and has a cyclic integral 

𝑑𝐿

𝑑𝑞̇σ
= 𝐶𝑜𝑛𝑠𝑡 

Often this integral describes the case of conservation of momentum or angular momentum. 

 

Example: elliptical pendulum  

П and T do not depend on x, so x is a cyclic coordinate, and there is an integral 

𝑑𝑇

𝑑𝑥̇
= (𝑚1 +𝑚2)𝑥̇ + 𝑚2𝑙𝜑̇𝐶𝑜𝑠𝜑 = 𝐶𝑜𝑛𝑠𝑡 

We have already noted that this integral expresses the expected conservation of the momentum of 

the system along the x-axis.   
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