
1 

 

Министерство науки и высшего образования Российской Федерации  

________________ 

САНКТ-ПЕТЕРБУРГСКИЙ  

ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО  

__________________________________________________________ 

 

 

А.В. Костарев   Т.А. Костарева 

 

 

 

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 

КОЛЕБАНИЯ 

ГИРОСКОПЫ 

 

ТЕОРИЯ И ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ 

 

Учебное пособие на английском языке 

 

 

 

 

 

 

 

 

 

 

 

Санкт-Петербург  

2025 



2 

 

 

CONTENTS 

 

INTRODUCTION TO THE THEORY OF OSCILLATIONS 

 

Determination of the equilibrium position of the system.  3 

Stability of the equilibrium position according to Lyapunov.  4 

Linear and nonlinear systems. Linearization.   

Lagrange–Dirichlet theorem. Sylvester's criterion. 5 

System with one degree of freedom. Free oscillations without resistance. 6 

Relay dissipative function Ф .  7 

Ф and total mechanical energy.  8 

Influence of viscous resistance on the motion of the system.  

Forced oscillations without resistance.  11 

Beats and resonance in the absence of resistance.  13 

Dependencies of the coefficient of dynamism and phase shift. 14 

Forced oscillations with viscous resistance. The law of motion.  15 

Set of control oscillation problems for system with one degree of freedom 

Example of solving the problem of oscillations of a system with one degree of freedom. 

18 

System with two degrees of freedom. Quadratic form of the potential energy.  

Condition for the stability of the equilibrium position 

20 

Quadratic form of kinetic energy.  

Differential equations of motion of a system. Main forms 

21 

Oscillations of a double mathematical pendulum  24 

Forced oscillations without resistance. Dynamic vibration damper. 25 

 

ELEMENTARY GYROSCOPE THEORY 

Gyroscope on a hinge.  27 

Role of Coriolis forces of inertia  28 

Role of transport inertial forces 29 

Angular acceleration of the gyroscope 31 

Gyroscopic effects  

Free gyroscope on the plane 32 

Columbus egg.   

 

 

 

 

INTRODUCTION TO THE THEORY OF OSCILLATIONS 

 

Everything around us, even seemingly at rest, is in a periodic motion called oscillation. 

Characteristic conditions for the occurrence of oscillation are the presence of: 

1. The equilibrium position (state or process) around which the oscillations occur. 

2. Forces that tend to return the system to an equilibrium position and are therefore 

called restoring forces. 
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Determination of the equilibrium position of the system. 

A system with ideal holonomic stationary constraints is considered. Let the number of 

degrees of freedom of the system be 𝑙 =  1, and the system be conservative with the potential 

П(𝑞). 
To determine whether the system has equilibrium positions, we will use the principle of 

possible velocities, which states that if there is such a position, then the potential energy in it has 

an extremum. 

𝜕П/𝜕𝑞 = 0 

Thus we have obtained an equation for finding the equilibrium position. If it has solutions, then 

the system has equilibrium positions. 

Example: A reversed mathematical pendulum.  

This is the name of the mathematical pendulum of length l and mass 𝑚, held in a 

vertical equilibrium position by a spiral spring of stiffness c'.  Let us choose the 

equilibrium position for the zero level of potential energy: П(0) =  0.  The 

function П(𝜑) is calculated as the work of gravity and spring when the pendulum 

returns to the equilibrium position. 

Π(𝜑) = −𝑚𝑔𝑙(1 − 𝐶𝑜𝑠𝜑) +
1

2
𝑐′𝜑2 

The static principle of possible displacements gives the equilibrium condition:  

П’ = 0    or 𝑐’𝜑 = 𝑚𝑔𝑙𝑆𝑖𝑛𝜑 

The solutions to this equation are found at the points of intersection of the line у =  𝑐’𝜑 and the 

sine wave  у =  𝑚𝑔𝑙𝑆𝑖𝑛𝜑 

The lower the spring stiffness 𝑐’, the more equilibrium positions the system will have. 

The graph shows that the system has 4 equilibrium positions.  In the absence of a spring, there 

are countless of them, but physically these are 

two vertical positions. 

If the spring is rigid 

𝑐’ >  𝑚𝑔𝑙 

then the pendulum has only one equilibrium 

position 𝜑 = 0. 

In general, there are three types of 

equilibrium position: stable, unstable, 

indifferent.  For the ball, these are positions (1), (2) and (3).  When deviating from a stable 

position, the ball tends to return to it.  At the slightest 

deviation from the unstable position, the ball will 

never return there.  The positions of indifferent 

equilibrium make up a continuum - next to any of 

them there is the similar.   

Experience shows that oscillations occur only near a stable equilibrium position. 

 

 

𝜑1=0 𝜑2 𝜑3 𝜑4 

𝜑 

 

1 

2 

3 

s' 

φ 
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Stability of the equilibrium position according to Lyapunov. 

Let us consider a system with one degree of freedom and an equilibrium position in 

which we choose the origin of the generalized coordinate 

q. The state of the system is determined by the values of 

its coordinate 𝑞(𝑡) and velocity  𝑞̇ (t).  We will take these 

parameters as the coordinates of the phase plane q 𝑞̇.  

The origin of the phase coordinates corresponds to the 

equilibrium position of the system. 

Let's see how the system will move if it is brought 

out of its equilibrium state.  At 𝑡 = 0, let's give the 

system a perturbation: 𝑞𝑜𝑞0̇.  . Then the system will 

make a perturbed motion, and the depicting point will 

describe the phase trajectory.  

The considered equilibrium position is called stable according to Lyapunov if for any 

two arbitrarily small numbers ε, ε' it is possible to specify such two arbitrarily small numbers δ, 

δ' that the phase trajectory with the beginning in the δ region will never leave the ε region. 

 

Linear and nonlinear systems. Linearization.  

Consider a conservative system with potential energy П(𝑞)and an equilibrium position in 

which we choose the beginning of 𝑞 and the zero level of potential energy:  

П(0) = 0  П’(0) = 0 – equilibrium condition 

Let's decompose П(𝑞) into a McLaren series, taking into account the condition of equilibrium:  

П(𝑞) = П(0) + П’(0)𝑞 +
1

2
П”(0)𝑞2 + ⋯ . =  

1

2
П”(0)𝑞2 + ⋯. 

The first remaining term in the series is called the quadratic form because it contains the square 

of 𝑞. 

A system is called П linear with respect to 𝑞 if it is a quadratic form, i.e. all following 

terms of the expansion of П are equal to zero. 

Kinetic energy of the system.  

𝑇 =
1

2
 ∑ 𝑚𝑘𝑉𝑘

2  𝑽k =
∂𝐫k

∂𝑞
𝑞̇ 

𝑇 =
1

2
[∑ (

∂𝐫k

∂𝑞
)

2

] 𝑞̇2 =
1 

2
𝑎(𝑞)𝑞̇2 

Let 's decompose the function 𝑎(𝑞)into a McLaren series. 

𝑎(𝑞)  =  𝑎(0)  +  𝑎’(0)𝑞 +. .. 

A system is said to be linear with respect to T if T is a quadratic form of 𝑞̇2   with a constant 

coefficient 𝑎, i.e.  𝑎(𝑞) = 𝐶𝑜𝑛𝑠𝑡.   A system is linear if it is linear with respect to both T and П.  

If the system is not linear, then we have to linearize it. Linearization of system is the 

introduction of constraints that allow the system to be considered almost linear. If we consider 

the small motions of the system 𝑞, 𝑞̇ << 1, then only the first term will remain in the 

decomposition of the function П(𝑞). 

q 

𝑞̇ 

δ 

δ’ 

- ε’ 

ε 

- δ’ 

- δ 

ε’ 

-ε 

M0(q0𝑞̇0) 
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П ≈  
 1 

2
 𝑐𝑞2,                 𝑐 =  П”(0) – rigidity of the system 

After linearization in 𝑎(𝑞) McLaren series, we have 

only 𝑎(0)  ≡  𝑎 

𝑇 =  
1 

2
 𝑎𝑞̇2 

Corollary: it is easier to obtain a quadratic form for T by 

calculating T while it is passing by the equilibrium 

position of the system. 

Examples: 

a) Linear spring: 𝑇 =
1

2
𝑚𝑥̇2 ; П =  

 1 

2
 𝑐𝑥2   - linear both in T and П  

b) Reversed pendulum: 𝑇 =
1

2
𝑚𝑙2φ̇2;   Π = −𝑚𝑔𝑙(1 − 𝐶𝑜𝑠𝜑) +  

 1 

2
 𝑐′𝜑2 

– nonlinear in П, but linear in T. 

 

Lagrange–Dirichlet theorem (without proof). Sylvester's criterion. 

Theorem: In order that a given position of equilibrium be stable according to Lyapunov, 

it is necessary (but not sufficient) that the function П has a minimum in this position. 

Let's choose the origin and the zero level of potential energy in the equilibrium position. After 

linearization (if required), we get: 

For a system with one degree of freedom 

  П =  
 1 

2
 𝑐𝑞2,            𝑐 =  П” (0) >  0 – the condition of minimum and stability 

For a system with l degrees of freedom: 

П = П0 + ∑ (
𝜕П

𝜕𝑞𝑖
)

0

𝑞𝑖 +
1

2
∑ (

𝜕2П

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

𝑞𝑖𝑞𝑗 + ⋯ ≈
1

2
∑ 𝑐𝑖𝑗𝑞𝑖𝑞𝑗 

System Stiffness Factors  

𝑐𝑖𝑗 = (
𝜕2П

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

    𝑖, 𝑗 = 1,2. . . 𝑙 

form the stiffness matrix of the system 

𝐶 = (

𝑐11 ⋯ 𝑐1𝑙

⋮ ⋱ ⋮
𝑐𝑙1 ⋯ 𝑐𝑙𝑙

) 

According to the Lagrange-Dirichlet theorem, for the stability of the equilibrium position, 

it is necessary that the function П has a minimum at the origin. Since П is equal to zero there, it 

should be required that in the vicinity of zero, the function П be positively defined.  

It is known from mathematics that the condition for the positive definiteness of a 

quadratic form at zero is the Sylvester criterion:  

  the positivity of all the main diagonal minors of the stiffness matrix.  

с 𝑭в 

𝑚𝒈 l0 𝑥 

𝑦 

𝑥 0 
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𝛥1  =  𝑐11  >  0 

Δ2 = |
𝑐11 𝑐12

𝑐21 𝑐22
| = 𝑐11𝑐22 − 𝑐12

2 > 0 

…....... 

Δ𝑙 = |C| > 0 

If it is fulfilled, then this equilibrium position is stable according to Lyapunov. If the criterion is 

not met, then more subtle methods of stability research are required. 

 

SYSTEM WITH ONE DEGREE OF FREEDOM 

Free oscillations without resistance. 

The motion of a conservative system with one degree of freedom is considered near a 

stable equilibrium position, where the origin of the 𝑞 coordinate and the zero level of potential 

energy are chosen. After linearization (if needed), the kinetic and potential energies of the system 

will take the form of quadratic forms with constant coefficients. 

𝑇 =
1

2
𝑎𝑞̇2,               П =

1

2
𝑐𝑞2 

𝑎 > 0 due to the positivity of kinetic energy, с > 0 due to the stability of the equilibrium 

position 

Lagrange equation:  

q

П

q

T

q

T

dt

d




−=




−














 

leads to a differential equation of free oscillations without resistance  

𝑎 q = −𝑐𝑞 or  𝑞̈ + 𝑘2𝑞 = 0  (𝑘2 =
𝑐

𝑎
  𝑠−1) 

Let's try to find a solution of this equation in the form of an exponent. Substituting 

𝑞 = 𝑒𝜆𝑡 

into the equation, after the reduction of 𝑒𝜆𝑡, we obtain a characteristic equation for determining 

the unknown parameter λ 

𝜆2  +  𝑘2 = 0 

The equation has two imaginary roots  

𝜆 =  ±𝑘𝑖 
This means that the equation has two independent solutions. The general solution (second 

integral) of the equation  

𝑞 = 𝐶1𝐶𝑜𝑠𝑘𝑡 + 𝐶2𝑆𝑖𝑛𝑘𝑡 

contains two arbitrary constant integrations С1 and С2, which can be found from initial 

conditions:  

𝑡 = 0, 𝑞 = 𝑞0, 𝑞̇ = 𝑞̇0 

To use them, we find the law of velocity (the first integral of the equation) 

𝑞̇ = −𝐶1𝑘𝑆𝑖𝑛𝑘𝑡 + 𝐶2𝑘𝐶𝑜𝑠𝑘𝑡 

Substituting the initial conditions at 𝑡 = 0, we find that  

𝑞0 = 𝐶1,     𝑞̇0 = 𝐶2 𝑘     ℎ𝑒𝑛𝑐𝑒 

 𝐶1 = 𝑞0,    𝐶2 =
𝑞̇0

 𝑘
      

Finally 
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𝑞 = 𝑞0𝐶𝑜𝑠𝑘𝑡 +
𝑞̇0

 𝑘
𝑆𝑖𝑛𝑘𝑡 

That means that if position of equilibrium is stable  

𝑐 > 0 

then the system performs periodic movement at a natural frequency 

𝑘 = √
𝑐

𝑎
   сек−1 

It is more convenient to represent the law of motion as a single function of the sine.  To 

do this, let's introduce the new constants А  𝑎𝑛𝑑 𝛼 so that we get the sine of the sum 

С1 = А𝑆𝑖𝑛 𝛼,   𝐶2 = 𝐴𝐶𝑜𝑠 𝛼 

We get 

𝑞 = 𝐴𝑠𝑖𝑛(𝑘𝑡 +  𝛼) 

Here A is the amplitude, (𝑘𝑡 +  𝛼)is the phase, 𝛼 is the initial phase of oscillations. After a time 

period of oscillation Т, the sine phase will change by 2π radians: 

𝑘(𝑡 + 𝑇) + 𝛼 =  𝑘𝑡 + 𝛼 + 2𝜋 

consequently, the period of oscillations is 

𝑇 = 2𝜋/𝑘 sec 

Relay dissipative function  

Almost any system oscillates in some medium.  When the system moves, the resistance 

forces of the medium arise.  For example, the viscous damp forces proportional to the first 

power of the velocity of the points of the system:  

𝑭𝑘 = −𝛽𝑘𝒗𝑘(𝑘 = 1,2, . . . , 𝑛) 

Let's find a generalized resistance force, taking into account the Lagrange identity:  

𝑄𝑟𝑒𝑠 = ∑ 𝑭𝑘 ∙
𝜕𝒓𝒌

𝜕𝑞
= − ∑ 𝛽𝑘 𝒗𝑘 ∙

𝜕𝒗𝒌

𝜕𝑞̇
= −

𝜕Φ

𝜕𝑞̇
 

The dissipative Relay function of the viscous damp forces is introduced here: 

Φ =
1

2
∑ 𝛽𝑘𝒗𝑘

𝟐

𝑛

𝑘=1

 

We see that the expression Φ has the form of kinetic energy where instead of the masses 

are replaced the coefficients of resistance.  To find 𝑄𝑟𝑒𝑠  we need to write the Relay function in 

generalized coordinates:  

𝒗𝑘 =
𝜕𝒓𝒌

𝜕𝑞
𝑞̇,               Φ =

1

2
[∑ (

𝜕𝒓𝒌

𝜕𝑞
)

2

] 𝑞̇2 =
1

2
𝑏(𝑞)𝑞̇2 

The system is linear with respect to Φ, if 𝑏(𝑞) = 𝐶𝑜𝑛𝑠𝑡 (analogy with Т).  

If not, then small movements are considered: 𝑞 << 1 – the system is linearized: 𝑏(𝑞) ≈ 𝑏(0).  

So, like T, the Relay function should be calculated at the moment when the system passes the 

equilibrium position 𝑞 = 0, which always simplifies the calculations. 

 Viscous resistance arises in linear and angular dampers.  The Relay function is calculated 

in common case using the formula 

Ф =
1

2
∑ 𝛼𝑖 𝑉𝑖

2 +
1

2
∑ 𝛽𝑗 𝜔𝑗

2 
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where 𝛼𝑖  are the coefficients of resistance of linear dampers (shock absorbers), 𝑉𝑖 - the velocities 

of their pistons, 𝛽𝑗 −the coefficients of rotational resistance, 𝜔𝑗 − the angular velocities of 

rotating bodies.  

 

Ф and total mechanical energy. 

Consider a system with one degree of freedom and viscous resistance.   

Potential and kinetic energy, Relay function for a nonlinear system  

Π(𝑞) =
1

2
𝑐𝑞2      (𝑐 = 𝐶𝑜𝑛𝑠𝑡 > 0),       𝑇 =

1

2
𝑎(𝑞)𝑞̇2,        Φ =

1

2
𝑏(𝑞)𝑞̇2 

They have the properties of 

𝜕𝑇

𝜕𝑞̇
= 2𝑇,     

𝜕Φ

𝜕𝑞̇
= 2Φ,     Π̇ =

𝜕Π

𝜕𝑞
𝑞̇,      𝑇̇ =

𝜕𝑇

𝜕𝑞̇
𝑞̈ +

𝜕𝑇

𝜕𝑞
𝑞̇ 

Let us multiply the Lagrange equation for this system 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
= −

𝜕Π

𝜕𝑞
−

𝜕Φ

𝜕𝑞̇
 

by 𝑞̇ 

𝑞̇
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
𝑞̇ = −

𝜕Π

𝜕𝑞
𝑞̇ −

𝜕Φ

𝜕𝑞̇
𝑞̇ 

Using the formula  

𝑞̇
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
) =

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
𝑞̇) −

𝜕𝑇

𝜕𝑞̇
𝑞̈ = 2𝑇̇ −

𝜕𝑇

𝜕𝑞̇
𝑞̈ 

Taking into account the properties of the functions T, Φ, Π we get 

2𝑇̇ −
𝜕𝑇

𝜕𝑞̇
𝑞̈ −

𝜕𝑇

𝜕𝑞
𝑞̇ = −Π̇ − 2Φ or      𝑇̇ + Π̇ = −2Φ 

Ε̇ = −2Φ 

This result can be formulated as follows: 

Total mechanical energy Ε = T + Π   decreases at a rate of Ф2  

 

Influence of viscous resistance on the motion of the system. 

The differential equation of a system with one degree of freedom and viscous resistance 

is obtained from the Lagrange equation  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
= −

𝜕Π

𝜕𝑞
−

𝜕Φ

𝜕𝑞̇
 

After linearization (if required), we get quadratic forms 

Π(𝑞) =
1

2
𝑐𝑞2 ,       𝑇 =

1

2
𝑎𝑞̇2,        Φ =

1

2
𝑏𝑞̇2 

After substituting it into the Lagrange equation, we obtain the differential equation of 

damped oscillations 

𝑎𝑞̈ = −𝑐𝑞 − 𝑏𝑞̇ or 
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𝑞̈ + 2𝑛𝑞̇ + 𝑘2𝑞 = 0 

Here the notation is entered: coefficient of resistance  2𝑛 = 𝑏/𝑎 and the natural frequency 

square 𝑘2 = 𝑐/𝑎 

Let's find the solution to the equation in the form of an exponent: 

𝑞 = 𝑒𝜆𝑡 

By substituting this solution into the equation, after reducing by 𝑒𝜆𝑡, we obtain the characteristic 

equation  

𝜆2 + 2𝑛𝜆 + 𝑘2 = 0 

This equation has 2 roots 

𝜆 = −𝑛 ± √𝑛2 − 𝑘2 

which correspond to 2 independent solutions, as many as should have the equation of the second 

order. 

The type of solution depends on the sign of the radical expression 

1. Low Resistance Case 𝒏 < 𝒌 

In this case, the roots are complex and the solution looks like 

𝑞 = 𝑒−𝑛𝑡(𝐶1𝐶𝑜𝑠𝑘̃𝑡 + 𝐶2𝑆𝑖𝑛𝑘̃𝑡),                𝑘̃ = √𝑘2 − 𝑛2 < 𝑘 

This is the "second integral" integral of the differential equation under consideration 

The first integral is a generalized velocity 

𝑞̇ = −𝑛𝑒−𝑛𝑡(𝐶1𝐶𝑜𝑠𝑘̃𝑡 + 𝐶2𝑆𝑖𝑛𝑘̃𝑡) + 𝑒−𝑛𝑡(−𝐶1𝑘̃𝑆𝑖𝑛𝑘̃𝑡 + 𝐶2𝑘̃𝐶𝑜𝑠𝑘̃𝑡) 

As always, constants 𝐶1, 𝐶2 are found from the initial conditions: 

𝑡 = 0:  𝑞 = 𝑞0,      𝑞̇ = 𝑞̇0 

From where 

𝐶1 = 𝑞0                           𝐶2 =
1

𝑘̃
 (𝑞̇0 + 𝑛𝑞0) 

Let's explore this solution by moving on to the new permanent integrations 

𝐶1 = 𝐴𝑆𝑖𝑛𝛼,       𝐶2 = 𝐴𝐶𝑜𝑠𝛼 

For now                                             𝑞 = 𝐴𝑒−𝑛𝑡𝑆𝑖𝑛𝑘̃𝑡    

Denote  

𝐴̃ = 𝐴𝑒−𝑛𝑡 

– amplitude, which decreases over time. 
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We see that the system makes damped oscillations. 

They are quasi-periodic, since only the equilibrium 

position of the system is passed through equal intervals of 

time.  The quasi-period is calculated as for oscillations 

without resistance 

𝑇̃ =
2𝜋

𝑘̃
> 𝑇 =

2𝜋

𝑘
 

We see that with an increase in resistance 𝑛, the quasi 

period increases and becomes infinite with  

𝑛 → 𝑘 

i.e. when 𝑛 = 𝑘 the oscillations stop altogether.  

The rate of attenuation of oscillations is characterized by the ratio of adjacent swings 

(maximum deviations from the equilibrium position) 

𝜇 =
𝑎𝑖

𝑎𝑖+1
=

𝑒−𝑛𝑡

𝑒−𝑛(𝑡+𝑇̃/2)
= 𝑒𝑛𝑇̃/2 

called decrement (attenuation). Logarithmic decrement is often used. 

𝛾 = 𝑙𝑛𝜇 = 𝑛𝑇̃/2 

By measuring two adjacent swings and time 𝑇̃/2, it is possible to calculate the resistance 

coefficient n 

𝑛 =
2

𝑇̃
𝑙𝑛

𝑎𝑖

𝑎𝑖+1
 

2. Case of large resistance 𝒏 > 𝒌 

In this case, the roots of the characteristic equation are real numbers,  

𝜆1,2 = −𝑛 ± √𝑛2 − 𝑘2 

therefore  

𝑞 = 𝐶1𝑒𝜆1𝑡 + 𝐶2𝑒𝜆2𝑡 

𝐶1  и 𝐶2 are found from the initial conditions. 

We see that the motion is not oscillatory (aperiodic).  Let the 

initial deviation be positive.  The traffic schedule can have one of three 

types.   

a) 𝑞̇0 > 0  After deflection, the system asymptotically returns to the 

equilibrium position. 

 

 

𝑏)      𝑞̇0 < 0,     |𝑞̇0| < 𝑞0(𝑛 + √𝑛2 − 𝑘2)  The system 

immediately asymptotically returns to the equilibrium 

position. 

 

 

 



11 

 

𝑐)   𝑞̇0 < 0, |𝑞̇0| > 𝑞0(𝑛 + √𝑛2 − 𝑘2)    The system will pass through the equilibrium position 

once and return to the equilibrium position from the other side. 

 

 

 

 

 

3. Case  𝒏 = 𝒌 

Practically, an unlikely coincidence.  The aperiodic solution takes the form. 

𝑞 = 𝑒−𝑛𝑡(𝐶1 + 𝐶2𝑡) 

The movements are similar to the case 𝑛 > 𝑘 

 

Forced oscillations without resistance. 

As we have found out, a conservative system without resistance retains full energy and 

makes unquenchable oscillations. If we take into account the influence of the medium viscous 

resistance, then the oscillations are either absent or attenuated, and the total energy of the system 

decreases, passing into the medium. 

Energy can also enter the system from the medium. Let the action of the medium on the 

system be expressed by a periodic generalized force. As we know, any periodic function can be 

decomposed into a Fourier series: 

𝑄 = ∑ 𝐻𝑖𝑆𝑖𝑛(𝑝𝑖𝑡 + 𝛿𝑖) 

Here 𝐻𝑖 the amplitude of the i-th harmonic, with the frequency of this harmonic−𝑝𝑖, 𝛿𝑖 is the 

initial phase of this harmonic.  

The Lagrange equation of the system:  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
= −

𝜕П

𝜕𝑞
+ 𝑄 

By substituting the quadratic forms T and П 

𝑇 =
1

2
𝑎𝑞̇2,                           П =

1

2
с𝑞2, 

we obtain an inhomogeneous differential equation  

𝑎𝑞̈ + 𝑐𝑞 = ∑ 𝐻𝑖𝑆𝑖𝑛(𝑝𝑖𝑡 + 𝛿𝑖) 

Its solution consists of a general solution of a homogeneous equation and a partial solution.  

The partial solution will have the form of the right part, i.e. it will be a sum of solutions of the 

same kind (harmonics).  Therefore, it is enough for us to consider the generalized force in the 

form of only one of the harmonics. 

𝑄 = 𝐻𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

We obtain the differential equation of forced oscillations without resistance  
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𝑞̈ + 𝑘2𝑞 = ℎ𝑆𝑖𝑛(𝑝𝑡 + 𝛿),       ℎ =
𝐻

𝑎
 

The solution consists of the general solution of a homogeneous equation 

𝑞𝑜𝑜 = 𝐶1𝐶𝑜𝑠𝑘𝑡 + 𝐶2𝑆𝑖𝑛𝑘𝑡 

and a particular solution, which we will look for in the form of the right side 

𝑞ч = 𝐴𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

A is the amplitude of the partial solution, Let's find A . 

𝑞̈ч = −𝑝2𝐴𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

Substituting in the equation, after the abbreviation by Sin, we get 

(𝑘2 − 𝑝2)𝐴 = ℎ                       𝐴 =
ℎ

𝑘2 − 𝑝2
 

A partial solution has the form of 

𝑞ч =
ℎ

𝑘2 − 𝑝2
𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

Now the complete solution takes the form of 

𝑞 = 𝐶1𝐶𝑜𝑠𝑘𝑡 + 𝐶2𝑆𝑖𝑛𝑘𝑡 +
ℎ

𝑘2 − 𝑝2
 𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

𝑞̇ = −𝑘𝐶1𝑆𝑖𝑛𝑘𝑡 + 𝑘𝐶2𝐶𝑜𝑠𝑘𝑡 +
𝑝ℎ

𝑘2 − 𝑝2
 𝐶𝑜𝑠(𝑝𝑡 + 𝛿) 

Let's find C1, C2 from the initial conditions:  

𝑡 = 0:          𝑞 = 𝑞0;        𝑞̇ = 𝑞̇0 

𝑞0 =  𝐶1 +  
ℎ

𝑘2 − 𝑝2
𝑆𝑖𝑛𝛿           𝑞̇0 = 𝑘𝐶2 +

𝑝ℎ

𝑘2 − 𝑝2
𝐶𝑜𝑠𝛿  

From where 

𝐶1 =  𝑞0 −  
ℎ

𝑘2 − 𝑝2
𝑆𝑖𝑛𝛿           𝐶2 =

𝑞̇0

𝑘
+

𝑝

𝑘
 

ℎ

𝑘2 − 𝑝2
𝐶𝑜𝑠𝛿  

By substituting 𝐶1 and 𝐶2 in the solution, we will find the law of motion  

𝑞 = (𝑞0𝐶𝑜𝑠𝑘𝑡 +
𝑞̇0

𝑘
𝑆𝑖𝑛𝑘𝑡) −

ℎ

𝑘2 − 𝑝2
(𝑆𝑖𝑛𝛿 𝐶𝑜𝑠𝑘𝑡 +

𝑝

𝑘
 𝐶𝑜𝑠𝛿 𝑆𝑖𝑛𝑘𝑡) +

ℎ

𝑘2 − 𝑝2
 𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

We see that the motion of the system consists of three oscillations. The first is an 

oscillation with a natural frequency 𝑘 and amplitude that depends on initial conditions, the 

second is an oscillation with a natural frequency 𝑘 and amplitude that does not depend on initial 

conditions, and the third is forced oscillations with a frequency of the forcing force 𝑝 and 

amplitude that does not depend on initial conditions.  
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Beats and resonance in the absence of resistance. 

 How does a disturbing force arise?  It can be created by placing an electric motor with an 

unbalanced mass on an elastic beam.  The forcing 

frequency will be the angular speed of rotation of 

the electric motor 𝑝 = 𝜔.  When the motor does not 

rotate 𝜔 =  0 it oscillates on the beam with a 

natural frequency k.  If you turn on the motor, then at 𝜔  →   𝑘 the amplitude A increases, 

tending to infinity.  

Beats 

Let's find out how the system behaves in this case when 𝑝/𝑘 ~ 1. For simplicity, let's put 

the initial conditions as zero.  Then the solution will take the form: 

𝑞ч =
ℎ

𝑘2 − 𝑝2
[𝑆𝑖𝑛(𝑝𝑡 + 𝛿) − 𝑆𝑖𝑛(𝑘𝑡 + 𝛿)] = 

=  
2ℎ

𝑘2 − 𝑝2
𝑆𝑖𝑛

(𝑝 − 𝑘)𝑡

2
 𝐶𝑜𝑠(𝑝𝑡 +  𝛿) = 𝐴(𝑡) 𝐶𝑜𝑠(𝑝𝑡 +  𝛿) 

We can see that when 𝑝  →   𝑘 the amplitude of forced oscillations 𝐴(𝑡) becomes a 

periodic function of low frequency 
(𝑝−𝑘)

2
 we have the beats.  Beats can be heard in a motor 

aircraft when the engine rotation speed approaches the natural frequency of some part of the 

fuselage.  

Resonance 

The previously found partial solution  

𝐴 =
ℎ

𝑘2 − 𝑝2
 

loses its meaning at 𝑝 =  𝑘, since its amplitude strives for infinity.  The phenomenon of 

increasing the amplitude of forced oscillations A at certain values of the forcing frequency 𝑝 is 

called resonance.  Let us find out how the amplitude changes in time with 𝑝 =  𝑘. 

Let's try to find a private solution in the form of 

𝑞ч = 𝐵𝑡𝐶𝑜𝑠(𝑝𝑡 + 𝛿)                  

 𝑞̇ч = 𝐵𝐶𝑜𝑠(𝑝𝑡 + 𝛿) − 𝐵𝑝𝑡𝑆𝑖𝑛(𝑝𝑡 + 𝛿)            

 𝑞̈ч = −𝐵𝑝𝑆𝑖𝑛(𝑝𝑡 + 𝛿) − 𝐵𝑝𝑆𝑖𝑛(𝑝𝑡 + 𝛿) − 𝐵𝑝2𝑡𝐶𝑜𝑠(𝑝𝑡 + 𝛿) 

Substituting these expressions into the differential equation, taking into account 𝑝 =  𝑘 

𝐵 = −
ℎ

2𝑝
 

and partial solution 

𝑞ч = −
ℎ

2𝑝
𝑡𝐶𝑜𝑠(𝑝𝑡 + 𝛿) = 𝐴(𝑡) 𝐶𝑜𝑠(𝑝𝑡 + 𝛿)    

So, if the engine on the beam (see above) is immediately started with angular velocity 
𝜔 = 𝑝 =  𝑘, then the amplitude of forced oscillations (and the deformation of the beam) will 

increase linearly in time.  When the limit deformations of the beam are reached, the beam will 

break.  

ω =p 
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Dependencies of the coefficient of dynamism and phase shift 

Coefficient of dynamism 

Let us find the dependence of the amplitude A of the proper forced oscillations on the 

forcing frequency p.  To construct qualitative dependencies, it is customary to switch to 

dimensionless quantities.  Instead of amplitude A, consider its relation to "static deformation" 

𝐴ст =
𝐻

𝑐
=

𝐻

𝑎
 
𝑎

𝑐
=

ℎ

𝑘2
 , 

 which is called the coefficient of dynamism.   

𝜆 =
𝐴

𝐴ст
=

1

1 − 𝑧2
 

In here  

𝑧 =
𝑝

𝑘
  

is a dimensionless forcing frequency called 

the tuning coefficient . 

 At 𝑧 =  0    𝜆 = 1, at 𝑧 → ∞ 𝜆 →  0.  The 

graph takes the form of      𝜆(𝑧) 

 To avoid the danger of system failure, do not work near resonance z = 1 

Phase shift dependence ε (z) 

 Phase shift ε is the difference between the phase of the forcing force (pt+δ) and the phase 

of the partial solution.   Let's find ε at different values of z. 

  Partial Solution                        Phase Shift 

 At   𝑧 < 1 (𝑝 < 𝑘):     𝑞ч =
ℎ

|𝑘2−𝑝2|
𝑆𝑖𝑛(𝑝𝑡 + 𝛿)                                       ε = 0 

At 𝑧 =  1 (𝑝 = 𝑘):      𝑞ч = −
ℎ

2𝑝
𝑡𝐶𝑜𝑠(𝑝𝑡 + 𝛿) =

ℎ

2𝑝
𝑡𝑆𝑖𝑛 (𝑝𝑡 + 𝛿 −

𝜋

2
)                   ε =

𝜋

2
 

At 𝑧 >  1 (𝑝 > 𝑘):      𝑞ч = −
ℎ

|𝑘2−𝑝2|
𝑆𝑖𝑛(𝑝𝑡 + 𝛿) =

ℎ

|𝑘2−𝑝2|
𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜋)       ε =  𝜋 

Now we can draw a graph of the dependence ε (z).   

  

 

 

 

 

The phase shift can be observed by swinging the "scatter" - ball on an elastic band.  If the 

frequency of hand movements is less than the natural frequency of oscillations, then the ball 

moves in the same phase (inphase) with the hand (a).  With a high frequency of hand 

movements, the ball moves "in antiphase" with the hand (b). 

 

 

 

a

n

B  

ε 

𝜋 

z 
1 

𝜋

2
 

0 

z = 1 

z 

𝜆 =1 

𝜆  
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Forced oscillations with viscous resistance. The law of motion. 

The same system is considered, which, along with potential forces, is affected by the 

damping forces and disturbing forces.  

Potential forces are determined by the function of potential energy П(𝑞)– the zero level is 

chosen in the stable equilibrium position, where: П(0) = 0 and П’(0) = 0, П’’(0)  =  𝑐 >  0. 

The viscous damping forces are characterized by the Relay function Ф,.  After 

linearization, we have quadratic forms: 

П =
1

2
с𝑞2 (𝑐 > 0)           𝑇 =

1

2
𝑎𝑞̇2  (𝑎 > 0)         Ф =

1

2
𝑏𝑞̇2   (𝑏 > 0) 

The forcing forces are represented by the generalized force Q 

𝑄 = 𝐻𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

Let's write down the Lagrange equation:  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
= −

𝜕П

𝜕𝑞
−

𝜕Ф

𝜕𝑞̇
+ 𝑄 

Substituting expressions for T, П, Ф, Q we get an equation 

𝑞̈ + 2𝑛𝑞̇ + 𝑘2𝑞 = ℎ𝑆𝑖𝑛(𝑝𝑡 + 𝛿) 

2𝑛 =
𝑏

𝑎
;    𝑘2 =  

𝑐

𝑎
;      ℎ =

𝐻

𝑎
 

The solution of this inhomogeneous equation consists of the general solution 𝑞𝑜𝑜 of the 

homogeneous equation and the partial solution 𝑞ч of the inhomogeneous equation.   

Low resistance 𝑛 <  𝑘 solution 𝑞𝑜𝑜 attenuates over time    

𝑞𝑜𝑜 = 𝑒−𝑛𝑡(𝐶1𝐶𝑜𝑠𝑘̃𝑡 + 𝐶2𝑆𝑖𝑛𝑘̃𝑡),                𝑘̃ = √𝑘2 − 𝑛2 < 𝑘 

We are looking for a partial solution in the form of:  

𝑞ч = 𝐴𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀),    А is the amplitude, 𝜀 −phase shift. 

𝑞̇ч = 𝐴𝑝 𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀)              𝑞̈ч = −𝐴𝑝2𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) 

The right side of the equation is represented as  

ℎ𝑆𝑖𝑛(𝑝𝑡 + 𝛿) = ℎ𝑆𝑖𝑛[(𝑝𝑡 + 𝛿 − 𝜀) + 𝜀] = ℎ 𝑆𝑖𝑛𝜀 𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀) + ℎ 𝐶𝑜𝑠𝜀 𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) 

After substituting it into the equation, we find 

𝐴(𝑘2 − 𝑝2)𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) + 2𝑛 𝐴𝑝 𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀) =  

= ℎ 𝑆𝑖𝑛𝜀 𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀) + ℎ 𝐶𝑜𝑠𝜀 𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) 

Collecting the coefficients for 𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) and 𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀) we have 

𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀):          𝐴(𝑘2 − 𝑝2) = ℎ 𝐶𝑜𝑠𝜀 

𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀):                    2𝑛 𝐴𝑝 = ℎ 𝑆𝑖𝑛𝜀  

Squaring and adding, we find the amplitude of forced oscillations: 



16 

 

𝐴 =
ℎ

√(𝑘2 − 𝑝2 )2 + 4𝑛2𝑝2
 

Dividing the second by the first, we find the phase displacement tangent:  

𝑡𝑔𝜀 =
2𝑛𝑝

𝑘2 − 𝑝2
 

Final partial solution 

𝑞ч =
ℎ

√(𝑘2 − 𝑝2 )2 + 4𝑛2𝑝2
𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) 

General solution of the differential equation of oscillations (𝑛 <  𝑘):  

𝑞 = 𝑒−𝑛𝑡(𝐶1𝐶𝑜𝑠𝑘̃𝑡 + 𝐶2𝑆𝑖𝑛𝑘̃𝑡) +
ℎ

√(𝑘2 − 𝑝2 )2 + 4𝑛2𝑝2
𝑆𝑖𝑛(𝑝𝑡 + 𝛿 − 𝜀) 

 

𝑞̇ = −𝑛𝑒−𝑛𝑡(𝐶1𝐶𝑜𝑠𝑘̃ + 𝐶2𝑆𝑖𝑛𝑘̃𝑡) + 𝑒−𝑛𝑡(−𝐶1𝑘̃𝑆𝑖𝑛𝑘̃𝑡 + 𝐶2𝑘̃𝐶𝑜𝑠𝑘̃𝑡)

+
ℎ𝑝

√(𝑘2 − 𝑝2 )2 + 4𝑛2𝑝2
𝐶𝑜𝑠(𝑝𝑡 + 𝛿 − 𝜀) 

As always, the constant integrations of C1 and C2 are found from the initial conditions 

𝑡 = 0:     𝑞 = 𝑞0;     𝑞̇ = 𝑞̇0 

𝑞0 = 𝐶1 + 𝐴𝑆𝑖𝑛(𝛿 − 𝜀)                       𝑞̇0 = −𝑛𝐶1 + 𝐶2𝑘̃  + 𝐴𝐶𝑜𝑠(𝛿 − 𝜀) 

From where 

𝐶1 = 𝑞0 − 𝐴𝑆𝑖𝑛(𝛿 − 𝜀)          𝐶2 =
1

𝑘̃
(𝑞̇0 + 𝑛𝐶1 − 𝐴𝐶𝑜𝑠(𝛿 − 𝜀)) 

We see that C1 and C2 consist of initial conditions and components that depend on the 

disturbing force. Substituting C1 and C2 in the solution, we see that, as it was in forced 

oscillations without resistance, the motion of the system consists of three oscillations (𝑛 < 𝑘): 

1. Oscillations with a quasi-frequency 𝑘̃ and amplitude depending on the initial conditions,  
2. Oscillations with a quasi-frequency 𝑘̃ and amplitude independent of initial conditions    
3. Proper forced oscillations with a frequency of р.  

Regardless of the value of the resistance 𝑛, the first two oscillations disappear over time and 

the proper forced oscillations (the partial solution) remain.  Therefore, it is of particular interest. 

 

Characteristics 𝜆(𝑧)  and   𝜀 (𝑧) 

We will construct qualitative characteristics in dimensionless values of the coefficients of 

dynamism 𝜆 and adjustment 𝑧 

𝜆 =
𝐴

𝐴ст
=

1

√(1 − 𝑧2)2 + 4𝜈2𝑧2
           𝑡𝑔𝜀 =

2𝜈𝑧

1 − 𝑧2
 

Where 𝜈 =
𝑛

𝑘
−is the dimensionless coefficient of resistance. 

Let's explore the dependence 𝜆(𝑧)on extremes.  

Obviously, 𝜆 = 1 with 𝑧 =  0 , and 𝜆 → 0   with 𝑧 → ∞,  
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Let's consider the radical expression 

𝑦 = (1 − 𝑧2)2 + 4𝜈2𝑧2 

Let's find the extremum suspicious points. 

𝑦′ = −4𝑧(1 − 𝑧2) + 8𝜈2𝑧 = 0 

The root 𝑧1 = 0 exists at any resistance 𝜈 

The second root will be found from 

1 − 𝑧2 − 2𝜈2 = 0  𝑧2 = √1 − 2𝜈2 < 1  

This root decreases with increasing resistance and disappears with resistance 

𝜈 > 𝜈∗ =
1

√2
 

Let's find out the type of extreme point at zero. 

𝑦′′ = −4(1 − 𝑧2) + 8𝑧2 + 8𝜈2|𝑧=0 = −4(1 − 2𝜈2) 

When 𝜈 < 𝜈∗ the derivative in zero is negative,  𝑦 has a max and 𝜆 −minimum in zero. 

It is at 𝜈 < 𝜈∗, that there is a second 

root 𝑧2, in which 𝜆 has a maximum, 

since the minimum is followed by a 

maximum. 

 So, the graph of the function 

𝜆(𝑧) depends on the value 𝜈 of 

resistance: at 𝜈 < 𝜈∗ 𝜆(𝑧)  has a 

minimum at zero and a maximum 

(resonance) at z2.  The value of z2 

and the value of the resonant 

amplitude decrease with increasing resistance 𝜈.  With high resistance 𝜈 > 𝜈∗ 𝜆(𝑧)   has only a 

maximum at zero. 

We see that at  𝜈 < 𝜈∗, the coefficient of dynamism (amplitude) of forced oscillations 

reaches its maximum value at 𝑧2. As is known, an increase in amplitude 𝜆 at some values of the 

forcing frequency (z) is called resonance. Thus, in the presence of resistance, resonance occurs 

at 𝑧2. 

As the resistance increases, the value 𝑧2 decreases, and resonance is reached earlier. It can 

be shown that in this case the resonant amplitude will decrease. When 𝜈 ≥ 𝜈∗the resonance 

disappears. As is known, in the absence of resistance, resonance occurs at 𝑧 = 1 

Graph ε (z) 

When 𝑧 = 1 all schedules go through 𝜋/2.  
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Findings: 

1) A conservative system (all forces are 

potential) makes undamped oscillations near 

the position of stable equilibrium (𝑐 > 0). 

2) The medium (the force of viscous 

resistance) takes away the full mechanical 

energy from the system, so even with low 

resistance, the oscillations will be dampened, and with high resistance, there will be no 

vibrations at all. 

3) If energy enters the system without resistance in the form of a periodic disturbing force, 

then forced oscillations with the frequency of the disturbing force appear. Their 

amplitude reaches a high value at 𝑝 =  𝑘 (the phenomenon of resonance) if the system 

does not collapse first. 

4) The most common model is the model of forced oscillations with resistance, in which an 

increase in resistance decreases the resonance amplitude and reduces the resonance 

phenomenon to zero when the resistance 𝜈∗is reached (the resonance disappears). 

5) The dangerous phenomenon of resonance can be avoided if you: 

a) work away from the resonance zone 

b) eliminate resonance with the help of dampers. 

There are mechanisms in which oscillations are useful, for example, a tamper, a jackhammer, a 

conveyor (oscillates). 

 

Set of control oscillation problems for system with one degree of freedom is at 

https://disk.yandex.ru/d/sE-Djnx26knu9w  

 

 

Example of solving the problem 

on oscillations of a system with one degree of freedom. 

 

The three-body system moves under the influence of alternating torque and experiences 

the action of two springs, the viscous resistance to the rotation of the roller moving without 

slippage, and a linear damper. The rods have different lengths and weights.   

To find:  

1. Ratio of static deformations of springs 

2. The condition of stability of the depicted equilibrium 

position. 

3. Differential equation of small motions of a system 

 

Solution: 

Let's denote the masses, stiffnesses and resistance coefficients.   

The system has one degree of freedom, since the thread is non-stretch and tensioned by a 

spring, and the roller rolls without slipping.   

1. Let us make a quadratic form of kinetic energy.  As is known, T acquires the form at 

the moment when the system passes the equilibrium position depicted in the figure. 

s 
B l 

m2g 
c1 β 

m3g 

c’ φ 

 MoSinpt 
β'  ρ 

φ1 

A

n

m1g 

https://disk.yandex.ru/d/sE-Djnx26knu9w
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𝑇 =
1

2
(𝐽1 + 𝐽2)𝜑̇2 +

1

2
𝑚3𝑠̇2 +

1

2
𝐽3𝜑̇1

2
 

𝐽1 =
1

3
𝑚1𝑙1

2,             𝐽2 =
1

3
𝑚2𝑙2

2            𝐽3 = 𝑚3𝜌2 

Kinematic ratios: 

𝜑̇1 =
𝑙1

𝑅 − 𝑟
𝜑̇,                     𝑠̇ = 𝜑̇1𝑟 =

𝑙1𝑟

𝑅 − 𝑟
𝜑̇  

Getting a quadratic form 

𝑇 =
1

2
[
1

3
(𝑚1𝑙1

2 + 𝑚2𝑙2
2) + 𝑚3𝑙1

2 𝑟2 + 𝜌2

(𝑅 − 𝑟)2
] 𝜑̇2 =

1

2
𝑎𝜑̇2 

Here, 𝑎 is the coefficient of inertia of the system 

 

2. Let us make the quadratic form of the Relay function Ф.  As is known, the Ф acquires the 

form at the moment when the system passes the equilibrium position shown in the figure. 

Ф =
1

2
𝛽𝑣𝐴

2 +
1

2
𝛽′𝜑̇1

2
 

Kinematic ratios 

𝑣𝐴 =
2𝑙1𝑟

𝑅 − 𝑟
𝜑̇ 

Quadratic form Ф 

Ф =
1

2
[𝛽

4𝑙1
2𝑟2

(𝑅 − 𝑟)2
+ 𝛽′

𝑙1
2

(𝑅 − 𝑟)2
] 𝜑̇2 =

1

2
𝑏𝜑̇2 

Here 𝑏 is the coefficient of resistance of the system 

3. Let's find the quadratic form of potential energy.  As is known, the potential energy is equal 

to the work of potential forces when the system returns to the equilibrium position. The 

gravity of m3g does not do the work as it is perpendicular to the movement of the center of 

the roller.  The deformation of a linear spring in the deflected position consists of the static 

deformation and the sum of the displacements of the spring ends at rotation 𝜑 (the ends of 

the spring move in opposite directions). 

П = 𝑚1𝑔
𝑙1

2
(1 − 𝐶𝑜𝑠𝜑) − 𝑚2𝑔

𝑙2

2
𝑆𝑖𝑛𝜑 + 

+
𝑐1

2
[(∆ст +

𝑅 + 𝑟

𝑅 − 𝑟
𝑙1𝜑 + (𝑙1 − 2𝑅)𝜑)

2

− ∆ст
2] +

𝑐′

2
[(∆′ст + 𝜑)2 − ∆′ст

2
] 

The system is nonlinear, since trigonometric functions are series of 𝜑 

𝐶𝑜𝑠𝜑 = 1 −
𝜑2

2
+ ⋯             𝑆𝑖𝑛𝜑 = 𝜑 − ⋯ 

It is necessary to consider small oscillations: 𝜑, 𝜑̇ ≪ 1 and to discard in the expansions the 

terms of higher orders.  

Let us show that the potential energy is the quadratic form of the generalized 

coordinate 𝜑 

П =
1

2
с𝜑2 

The terms with zero degree ∆ст are reduced. This is as it should be, since in the equilibrium 

position the potential energy is zero. 

The terms of the first degree 𝜑 must also be absent due to the equilibrium condition. 

П′0 = 0 

Let us equate the coefficient with zero to the first power 𝜑.  It can be computed as the value of 

the first derivative П′0 in the equilibrium position.  But it is easier to collect coefficients at the 

first degree 𝜑 
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−𝑚2𝑔
𝑙2

2
+ 𝑐1 (

𝑅 + 𝑟

𝑅 − 𝑟
𝑙1 + 𝑙1 − 2𝑅) ∆ст + 𝑐′∆′

ст= 0 

This expression can be called the "ratio of static deformations". It shows that only one static 

deformation can be defined in the equilibrium position.  The second must be determined from the 

ratio. 

 Thus, the potential energy is indeed a quadratic form of 𝜑, from which we can find the 

stiffness coefficient of the system c.  It is equal to . 

с = П′′0 

But it is easier to find it as a coefficient by 
𝜑2

2
 in the expression of potential energy  

с = 𝑚1𝑔
𝑙1

2
+ 𝑐1 (

𝑅 + 𝑟

𝑅 − 𝑟
𝑙1 + 𝑙1 − 2𝑅)

2

+ 𝑐′ 

The condition for the stability of the equilibrium position is 

с > 0 

We can see that the condition is met at any parameter values. 

 

4. Let us find the generalized forcing force arising from the variable torque applied to the roller 

𝑀 = 𝑀0𝑆𝑖𝑛𝑝𝑡 

by calculating the power of the moment at the positive possible generalized velocity 𝜑̇ > 0.  

The directions of momentum and angular velocity are opposite, so 

𝑁 = −𝜑̇1𝑀0𝑆𝑖𝑛𝑝𝑡 = (−
𝑀0𝑙1

𝑅 − 𝑟
𝑆𝑖𝑛𝑝𝑡) 𝜑̇ = 𝑄в𝜑̇ 

𝑄в = −
𝑀0𝑙1

𝑅 − 𝑟
𝑆𝑖𝑛𝑝𝑡 = Н𝑆𝑖𝑛𝑝𝑡 

Let us make a differential equation of small oscillations of the system.  By substituting 

the quadratic forms T, П, and Ф into the Lagrange equation 

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝜑̇
−

𝜕𝑇

𝜕𝜑
= −

𝜕П

𝜕𝜑
−

𝜕Ф

𝜕𝜑̇
+ 𝑄в 

we get 

𝑎𝜑̈ = −𝑐𝜑 − 𝑏𝜑̇ + Н𝑆𝑖𝑛𝑝𝑡 

Dividing by 𝑎 

𝜑̈ + 2𝑛𝜑̇ + 𝑘2𝜑 = ℎ𝑆𝑖𝑛𝑝𝑡 

In here 

2𝑛 =
𝑏

𝑎
;    𝑘2 =

𝑏

𝑎
;    ℎ =

𝐻

𝑎
 

 

 

SYSTEM WITH TWO DEGREES OF FREEDOM 

 

Quadratic form of potential energy. Condition for the stability of the equilibrium position. 

 We consider a system with 2 degrees of freedom and generalized coordinates 𝑞1, 𝑞2. All 

forces are potential, which means that there is a function П (𝑞1, 𝑞2). The system has an 

equilibrium position in which we choose the origin and the zero level of potential energy 

П (0,0)  =  0. By equilibrium conditions:  

𝜕П

𝜕𝑞1

(0,0) = 0             
𝜕П

𝜕𝑞2

(0,0) = 0              
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Let's decompose П into a McLaren series at zero:  

П(𝑞1𝑞2) = П(0,0) +
𝜕П

𝜕𝑞1

(0,0)𝑞1 +
𝜕П

𝜕𝑞2

(0,0)𝑞2

+
1

2
(

𝜕2П

𝜕𝑞1
2

(0,0)𝑞1
2 + 2

𝜕2П

𝜕𝑞1 𝜕𝑞2

(0,0)𝑞1𝑞2 +
𝜕2П

𝜕𝑞2
2

(0,0)𝑞2
2

) + ⋯ 

In view of the choice of the zero level П and the equilibrium conditions, the first non-zero term 

will be the quadratic form 

П(𝑞1𝑞2) =
1

2
(с11𝑞1

2 + 2с12𝑞1𝑞2 + с22𝑞2
2) 

Here are the stiffness coefficients of the system:  

 с11 =
𝜕2П

𝜕𝑞1
2 (0,0)             с12 =

𝜕2П

𝜕𝑞1𝜕𝑞2
(0,0)            с22 =

𝜕2П

𝜕𝑞2
2 (0,0)     

 The system is called linear according to П if there are no expansion terms following the 

quadratic form. If the system is not linearized, then it is "linearized" by considering small 

motions of the system near the equilibrium position.  After linearization, the potential energy is 

practically a quadratic form. 

 The stiffness coefficients form a symmetrical stiffness matrix:  

𝐶 = (
с11 с12

с12 с22
) 

At the same time, since the order of taking the mixed derivative does not matter.с12  =  с21 

 Oscillations occur only near the position of stable equilibrium. The condition for the 

stability of the equilibrium position according to Lyapunov is the presence of min П in the 

equilibrium position (at zero). Since П (0,0) = 0, this means that in the vicinity of zero, П must 

be a positively defined function. 

It is known from mathematics that the condition for the positive definiteness of a 

quadratic form in the vicinity of zero is the Sylvester criterion:  the main diagonal minors of the 

stiffness matrix must be positive: 

с11 > 0|𝐶| = с11с22 − 𝑐12
2  >  0  

Quadratic form of kinetic energy. 

𝑇 =
1

2
∑ 𝑚𝑘𝑉𝑘

2 

𝑽𝑘 = 𝒓̇𝑘 =
𝜕𝑟𝑘

𝜕𝑞1
𝑞̇1 +

𝜕𝑟𝑘

𝜕𝑞2
𝑞̇2;                       

𝜕𝑟𝑘

𝜕𝑞1
(𝑞1𝑞2);     

𝜕𝑟𝑘

𝜕𝑞2
(𝑞1𝑞2)        

𝑇 =
1

2
(𝑞̇1

2 ∑ 𝑚𝑘 (
𝜕𝑟𝑘

𝜕𝑞1
)

2

+ 2𝑞̇1𝑞̇2 ∑ 𝑚𝑘 (
𝜕𝑟𝑘

𝜕𝑞1
) (

𝜕𝑟𝑘

𝜕𝑞2
) + 𝑞̇2

2 ∑ 𝑚𝑘 (
𝜕𝑟𝑘

𝜕𝑞2
)

2

) 

Thus, T is a quadratic form of generalized velocities with coefficients – in the general case, 

functions of coordinates: 

𝑎11 = ∑ 𝑚𝑘 (
𝜕𝑟𝑘

𝜕𝑞1
)

2

;            𝑎12 = ∑ 𝑚𝑘 (
𝜕𝑟𝑘

𝜕𝑞1
) (

𝜕𝑟𝑘

𝜕𝑞2
)           𝑎22 = ∑ 𝑚𝑘 (

𝜕𝑟𝑘

𝜕𝑞2
)

2

  

𝑇 =
1

2
(𝑎11𝑞̇1

2 + 2𝑎12𝑞̇1𝑞̇2 + 𝑎22𝑞̇2
2) 
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The system is called linear with respect to T if the coefficients at the generalized 

velocities are constant. If the system is not linearized, then it is linearized, considering the small 

motions of the system 

a11=a11(0,0) a12=a12(0,0) a22=a22(0,0) 

This means that it is possible to obtain the desired form T by calculating T at zero.  

Since kinetic energy is positive, the Sylvester criterion is always fulfilled for its coefficients:  

a11>0 a11a22-𝑎12
2 >0 

Differential equations of motion of a system. Main forms. 

By substituting into the Lagrange equations, 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇1
) −

𝜕𝑇

𝜕𝑞1
= −

𝜕П

𝜕𝑞1
             

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇2
) −

𝜕𝑇

𝜕𝑞2
= −

𝜕П

𝜕𝑞2
   

forms T and П, we obtain  the differential equations of the oscillations of the system:  

𝑎11𝑞̈1 + 𝑎12𝑞̈2 + 𝑐11𝑞1 + 𝑐12𝑞2 = 0 

𝑎21𝑞̈1 + 𝑎22𝑞̈2 + 𝑐21𝑞1 + 𝑐22𝑞2 = 0 

We look for the solution of equations in the form of periodic in-phase functions with 

different amplitudes:  

  𝑞1 = 𝐴𝑆𝑖𝑛(𝑘𝑡+∝)                𝑞2 = 𝐵𝑆𝑖𝑛(𝑘𝑡+∝)                 

By substituting these solutions into differential equations, after reducing by 𝑆𝑖𝑛(𝑘𝑡+∝), we 

obtain homogeneous algebraic equations with respect to the amplitudes A and B, with an 

unknown parameter – natural frequency  𝑘. 

𝐴(𝑐11 − 𝑎11𝑘2) + 𝐵(𝑐12 − 𝑎12𝑘2) = 0 

𝐴(𝑐12 − 𝑎12𝑘2) + 𝐵(𝑐22 − 𝑎22𝑘2) = 0 

As is known, a non-trivial (non-zero) solution of such equations exists if the determinant 

of the matrix of the system is equal to zero:  

(𝑐11 − 𝑎11𝑘2)(𝑐22 − 𝑎22𝑘2) − (𝑐12 − 𝑎12𝑘2)2 = 0 

This gives a biquadratic "frequency equation" with respect to natural frequency 𝑘 

𝑦(𝑘2) = 0 

the left part of which looks like: 

𝑦(𝑘2) = 𝑘4(𝑎11𝑎22 − 𝑎22
2) + 𝑘2(2𝑐12𝑎12 − 𝑎11𝑐22 − 𝑎22𝑐11) + ( 𝑐11𝑐22 − 𝑐12

2) 

It has two roots.  We accept only positive material decision, otherwise the decision will not be 

oscillating. Let us show that in a stable position of equilibrium they are just that.  
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 Let's build a graph 𝑦(𝑘2)  

𝑦(0) > 0 due to the fulfillment of the 

condition of stability of the 

equilibrium position 𝑐11𝑐22 − 𝑐12
2 >

0.   that   𝑦(∞) > 0  due to the fact 

that 𝑎11𝑎22 − 𝑎22
2 > 0 

At the same time, at frequency values 

called partial frequencies 

𝑘1
∗2 =

𝑐11

𝑎11
            𝑘2

∗2 =
𝑐22

𝑎22
 

𝑦(𝑘1
∗2) < 0                        𝑦(𝑘2

∗2) < 0 

 which follows directly from the frequency equation, since 

𝑐11 − 𝑎11𝑘1
∗2 = 0                           𝑐22 − 𝑎22𝑘2

∗2 = 0 

  Thus, the frequency equation has two real positive roots   𝑘1
2    and  𝑘1

2   if the equilibrium 

position is stable. 

Frequencies 𝑘1and are called 𝑘2the natural frequencies of the system. 

Let's return to the amplitude equations. They become dependent at natural frequencies, so 

it is impossible to find amplitudes A and B from them.  You can only find their ratios – the form 

coefficients for each frequency from any of the equations. 

For example, from the first equation 

𝐴(𝑐11 − 𝑎11𝑘2) + 𝐵(𝑐12 − 𝑎12𝑘2) = 0 

for each of the natural frequencies we find 

𝜇1 =
𝐵1

𝐴1
= −

𝑐11 − 𝑎11𝑘1
2

𝑐12 − 𝑎12𝑘1
2                                     𝜇2 =

𝐵2

𝐴2
= −

𝑐11 − 𝑎11𝑘2
2

𝑐12 − 𝑎12𝑘2
2 

Now the law of motion of the system takes the form: 

𝑞1 = 𝐴1𝑆𝑖𝑛(𝑘1𝑡 +∝1) + 𝐴2𝑆𝑖𝑛(𝑘2𝑡 +∝2) 

𝑞2 = 𝜇1𝐴1𝑆𝑖𝑛(𝑘2𝑡 +∝1) + 𝜇2𝐴2𝑆𝑖𝑛(𝑘2𝑡 +∝2) 

We see that the system performs 2 main oscillations with frequencies k1 and k2.  There 

are four arbitrary constants in the solution  

𝐴1;  ;  𝐴2 ∝1;    ∝2 

to be found from the initial conditions  

𝑡 = 0:   𝑞1 = 𝑞10;      𝑞2 = 𝑞20     𝑞̇1 = 𝑞̇10     𝑞̇2 = 𝑞̇20 

A note about normal coordinates  

It can be shown that for any system there are generalized coordinates, called normal, in 

which these coefficients of quadratic forms are absent  

𝑎12 = 0                с12 = 0 

𝑘2
2 𝑘1

2 

𝑘2
∗2

 𝑘1
∗2

 

𝑘2 

𝑦 
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In normal coordinates, the equations are "separated":  

𝑎11𝑞̈1 + 𝑐11𝑞1 = 0 

𝑎22𝑞̈2 + 𝑐22𝑞2 = 0 

 

Oscillations of a double mathematical pendulum  

Let us consider the motion of a double mathematical pendulum.  For 

simplicity, let's assume that their masses 𝑚 and lengths 𝑙 are the same.  

Lagrange equations. 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜑̇
) −

𝜕𝑇

𝜕𝜑
= −

𝜕П

𝜕𝜑
                   

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜃̇
) −

𝜕𝑇

𝜕𝜃
= −

𝜕П

𝜕𝜃
 

We find the quadratic form of kinetic energy by calculating T at the 

moment when the system passes the equilibrium position 𝜑, 𝜃 = 0. In the 

equilibrium position (the velocity of the lower mass is equal to ) 𝑙𝜑̇ + 𝑙𝜗̇ 

𝑇 =
𝑚

2
𝑙2𝜑̇2 +

𝑚

2
(𝑙𝜑̇ + 𝑙𝜗̇)̇ 2 = 𝑚𝑙2𝜑̇2 + 𝑚𝑙2𝜑̇𝜗̇ +

𝑚

2
𝑙2𝜗̇2 =

1

2
(𝑎11𝑞̇1

2 + 2𝑎12𝑞̇1𝑞̇2 + 𝑎22𝑞̇2
2) 

Thus, the system is linear with respect to T 

𝑎11 = 2𝑚𝑙2           𝑎12 = 𝑎22 = 𝑚𝑙2    

Potential energy of the system 

П = 𝑚𝑔𝑙(1 − 𝐶𝑜𝑠𝜑) + 𝑚𝑔𝑙[(1 − 𝐶𝑜𝑠𝜑) + (1 − 𝐶𝑜𝑠𝜃)] 

The system is not linear in П, so it is necessary to consider small motions near the equilibrium 

position.  For now 

П = 𝑚𝑔𝑙𝜑2 + 𝑚𝑔𝑙
𝜃2

2
=

1

2
(с11𝜑2 + 2с12𝜑𝜃 + с22𝜃2) 

Hence 

с11 = 2𝑚𝑔𝑙                 с12 = 0          с22 = 𝑚𝑔𝑙 

Frequency equation:  

𝑘4(2𝑚2𝑙4 − 𝑚2𝑙4) + 𝑘2(−2𝑚2𝑙3𝑔 − 2𝑚2𝑙3𝑔) + 2(𝑚𝑔𝑙)2

= 𝑚2𝑙4𝑘4 − 4𝑚2𝑙3𝑔𝑘2 + 2(𝑚𝑔𝑙)2 = 0 

By reducing by 𝑚2𝑙4 we get   

𝑘4 − 4
𝑔

𝑙
𝑘2 + 2 (

𝑔

𝑙
)

2

= 0 

The solutions to this equation are natural frequencies 

𝑘2
1,2 = 2

𝑔

𝑙
± √(2

𝑔

𝑙
)

2

− 2 (
𝑔

𝑙
)

2

=
𝑔

𝑙
(2 ± √2) 

Let us find the coefficients of form for 𝑘2
1 =

𝑔

𝑙
(2 + √2) 

𝜇1 = −
𝑐11 − 𝑎11𝑘1

2

𝑐12 − 𝑎12𝑘1
2 = −

2𝑚𝑔𝑙 − 2𝑚𝑙2 𝑔
𝑙

(2 + √2)

−𝑚𝑙2 𝑔
𝑙

(2 + √2)
= −

2√2 + 2

2 + √2
= −√2 

𝑙 

𝑙 

𝑚𝒈 

𝑚𝒈 

 

𝜑 

𝜃 
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For the second frequency, we get 

𝜇2 = √2 

A positive shape coefficient means that pendulums will oscillate in phase (a).  A negative 

shape coefficient means that the pendulums will oscillate in the 

opposite phase (b).  Characteristically, a higher frequency 

corresponds to a negative shape coefficient. 

The system will oscillate along one of the shapes if the 

pendulums are deflected in proportion or as in the figure and 

released without initial speed.  Under arbitrary initial conditions, both forms of oscillations 𝜇1𝜇2  

will take place., 

 

Forced oscillations without resistance  

 Suppose there are disturbing forces applied to the conservative system, which are reduced 

to two generalized disturbing forces 𝑄1(𝑡)and 𝑄2(𝑡).  Then the differential equations of motion 

of the system will become inhomogeneous 

𝑎11𝑞̈1 + 𝑎12𝑞̈2 + 𝑐11𝑞1 + 𝑐12𝑞2 = 𝑄1(𝑡)      

𝑎21𝑞̈1 + 𝑎22𝑞̈2 + 𝑐21𝑞1 + 𝑐22𝑞2 = 𝑄2(𝑡)  

The solution of these equations consists of the general solution of the homogeneous equation 

(continuous oscillations with natural frequencies 𝑘1and 𝑘2) and forced oscillations.   

 As mentioned, from coordinates 𝑞1   𝑞2  it is possible to proceed to normal 

coordinates 𝜃1  𝜃2, in which differential equations are separated.  Let the disturbing forces be 

harmonious, then  

𝑎11θ̈1 + 𝑐11θ1 = 𝐻1𝑆𝑖𝑛(𝑝𝑡 + 𝛿)      

𝑎22θ̈2 + 𝑐22θ2 = 𝐻2𝑆𝑖𝑛(𝑝𝑡 + 𝛿)  

From these equations, it can be seen that the system has two resonances when each of the natural 

frequencies coincides with the forcing frequency р. 

 

Dynamic vibration damper 

     The figure shows the diagram of the machine mass 𝑀 on an elastic base of stiffness 𝑐1.  

A periodic disturbing force 𝐻𝑆𝑖𝑛(𝑝𝑡 +  𝛿)is applied to the machine, which can arise, for 

example, from the imbalance of the engine of the machine 

rotating at angular velocity 𝜔 = 𝑝.    

 Obviously, the machine will make unwanted forced 

oscillations, especially dangerous near the resonance 𝜔 →

𝑘. 

 Let's show how to use a dynamic vibration damper to rid the machine of forced 

oscillations.  A dynamic vibration damper is a body of mass 𝑚 mounted on a spring of stiffness 

𝑐2 on the machine. 

a b 

𝐻𝑆𝑖𝑛(𝑝𝑡 +  𝛿) 

𝑐1 

𝑀𝒈 
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 Let us find the quadratic forms of the kinetic and potential energies of such a 

construction.  As the generalized coordinates, we choose 

absolute coordinates 𝑧1  𝑧2, the origin of which is chosen in 

the position of equilibrium.   

П = −𝑚𝑧2 − 𝑀𝑧1 +
𝑐1

2
[(Δст1 + 𝑧1)2 − Δст1

2]

+
𝑐2

2
[(Δст2 + 𝑧2 − 𝑧1)2 − Δст2

2]

=
1

2
(с11𝑧1

2 + 2с12𝑧1𝑧2 + с22𝑧2
2) 

Hence 

с11 = 𝑐1 + 𝑐2         с12 = −𝑐2              с22 =  𝑐2 

𝑇 =
1

2
𝑀𝑧̇1

2 +
1

2
𝑚𝑧̇2

2 ==
1

2
(𝑎11𝑧̇1

2 + 2𝑎12𝑧̇1𝑧̇2 + 𝑎22𝑧̇2
2) 

Hence 

𝑎11 = 𝑀    𝑎12 = 0       𝑎22 = 𝑚     

By substituting the forms 𝑇 𝑎𝑛𝑑 П  into the Lagrange equations, we obtain the differential 

equations of motion  

𝑀𝑧̈1 + (𝑐1 + 𝑐2)𝑧1−𝑐2𝑧2 = H Sin(ωt +  𝛿) 

𝑚𝑧̈2−𝑐2𝑧1 + 𝑐2𝑧2 = 0  

We are looking for a solution in the form of the right part. 

𝑧1 = 𝐴Sin(ωt +  𝛿)               𝑧2 = 𝐵Sin(ωt +  𝛿) 

By substituting the solutions into the equations, after the reduction by Sin(ωt +  𝛿) we obtain an 

algebraic system for determining the amplitudes of the stimulated oscillations A and B. 

(𝑐1 + 𝑐2 − ω2𝑀)𝐴−𝑐2𝐵 = 𝐻 

−𝑐2𝐴 + (𝑐2 − ω2𝑚)𝐵 = 0 

System matrix determinant 

Δ = (𝑐1 + 𝑐2 − ω2𝑀)(𝑐2 − ω2𝑚)− 𝑐2
2 

System solutions 

𝐴 =
𝐻(𝑐2 − ω2𝑚)

Δ
                    𝐵 =

𝐻𝑐2

Δ
                     Δ = − 𝑐2

2 

 

From this it follows that it is possible to select its mass 𝑚 and spring stiffness 𝑐2 in such a way 

that  

𝑐2 = ω2𝑚 

the amplitude of forced oscillations of machine A will be equal to zero. 

𝐴 = 0                    𝐵 = −
𝐻

𝑐2
                    

It can be seen that the damper acts on the machine with a force that balances the disturbing force 

at every moment, all the energy of which is used to swing the damper. 

𝐻𝑆𝑖𝑛(𝑝𝑡 +  𝛿) 

 

𝑐1 

𝑀𝒈 

𝑐2 

𝑚𝒈 

z 
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𝐵𝑐2Sin(ωt +  𝛿) = −𝐻Sin(ωt +  𝛿) 

 It is natural to choose a small damper mass 𝑚 ≪ 𝑀, but then the stiffness of its spring 

should be small.  This, however, will lead to a large amplitude of vibrations of the damper itself. 

Therefore, the choice of specific damper parameters is the result of a compromise between the 

weight and amplitude of the damper. 

  

 

ELEMENTARY GYROSCOPE THEORY 

 

Gyroscope on a hinge 

 Gyroscope is an axisymmetric body 𝑚 that performs spherical motion under the influence 

of gravity and the support reaction, which is given a large initial angular velocity 𝜔𝑧 around the 

axis of symmetry z.  

The term gyroscope was proposed by Foucault in 1852.A gyroscope is, for example, an 

ordinary spinning top – a disk on an axis perpendicular to the 

disk (Fig) and resting on a hinge O. 

  At the initial moment, let the axis of the gyroscope 

be directed in the plane of the fixed axes YZ at an angle of α 

to the axis Z. Let us direct the y-axis in the plane XY, which 

it does not leave.  

The moving axes 𝑥, 𝑦, 𝑧 are the main axes of inertia of 

the gyroscope at O. Therefore, the gyroscope inertia tensor 

matrix at point O will be diagonal 

𝐽𝑜 = (

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

) 

Column of projections of the angular momentum of the body with respect to the support 

O on the moving axes 

𝐾𝑜 = 𝐽𝑜𝜔 = (

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

) (

𝜔𝑥

𝜔𝑦

𝜔𝑧

) = (

𝐽𝑥𝜔𝑥

𝐽𝑦𝜔𝑦

𝐽𝑧𝜔𝑧

)    (1) 

 

By spinning the gyroscope around its z-axis to angular velocity 𝜔0, we give it the initial 

angular momentum  𝑲оdirected along the z-axis 

The behavior of the vector 𝑲о is described by the angular momentum change theorem 

𝑑𝑲𝑜

𝑑𝑡
= 𝑴𝑜

𝑒        (2)     

The main moment of external forces 𝑴𝑜
𝑒 is created by the 

force of gravity mg. It is directed against the X-axis. 

According to the theorem, the velocity of the end of the vector  

𝑲оis also directed there. Its modulus is equal to the value of 

the moment 

𝑚𝑔 𝑂𝐶 𝑆𝑖𝑛𝛼 

The z-axis begins to rotate around the Z-axis with an 

angular velocity𝝎пр called the angular velocity of precession. 

The y-axis rotates at this speed in the XY plane. 

A

b

R 

mg 

𝝎0 = 𝝎𝑧 

C 

𝛼 

𝑲0 = 𝑲𝑧 

X 

Y 

Z 

𝝎пр 

z 

y 

x 

A

b

R 

mg 

𝝎0 = 𝝎𝑧 

C 

𝛼 

𝑲0 = 𝑲𝑧 

X 

Y 

Z 

𝝎пр 

z 

y 

x 
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Vectors 𝑲о𝑴𝑜
𝑒  , and 𝝎пр turn out to be related by the relation: 

𝝎пр × 𝑲о = 𝑴𝑜
𝑒  

 Absolute angular velocity becomes a vector sum 

𝝎 = 𝝎𝑧 +  𝝎пр 

 It follows from formula (1) that 𝑲о will no longer be directed along the z-axis of the 

gyroscope, as well as the vector of absolute angular velocity 𝝎.   
However, at a high velocity of proper rotation (𝜔𝑧 up to 30000 rpm), this difference can 

be neglected, and it can be considered that 𝑲о is directed along the gyroscope's proper z axis 

(approximate gyroscope theory). 

Let us find the angular velocity of precession. It is equal to the velocity modulus of the 

end of the vector 𝑲о (the modulus of the moment of gravity) divided by its distance to the Z axis 

𝜔пр =
𝑚𝑔𝑂𝐶𝑆𝑖𝑛 𝛼

𝐽𝑧𝜔0𝑆𝑖𝑛𝛼
=

𝑂𝐶

𝜌2𝜔0
𝑔 

We can see that the angular velocity of precession 𝜔пр is constant, does not depend on the 

angle of inclination 𝛼 of the gyroscope axis. It is inversely proportional to the square of the 

gyroscope's radius of inertia 𝜌 and its angular velocity 𝜔0, and is proportional to the distance of 

OC.   
To reduce the rate of precession, gyroscopes are made in the form of massive rings, and 

give them a large angular velocity of their own. Then 

𝜔𝑧 ≫ 𝜔пр 

The z-axis of the gyroscope moves along a conical surface with a central angle of 𝛼  with 

a constant angular velocity 𝜔прof precession. 

 

Role of Coriolis forces of inertia  

We see that the moment of gravity  𝒎𝑜(𝑚𝒈) does not create the expected rotation. Let's 

find out what forces balance it. 

Let's do this in the xyz reference frame associated with the gyroscope axis. Since it 

rotates at angular velocity, it is non-inertial. In a non-inertial frame of reference, Coriolis and 

portable inertia forces act on the points of the body. The latter can be neglected due to their small 

size.𝝎пр 

Let us consider the points A and B of a gyroscope on its diameter parallel to the x-axis. 

𝜔𝑧 ≫ 𝜔пр 

Coriolis inertia forces acting on the masses dm of these 

points 

Ф𝑐
𝐴 = −Ф𝑐

𝐵 = −2𝑑𝑚(𝝎пр × 𝑽𝐴) 

are directed opposite and at the moment parallel to the Y-axis.  

 We see that the Coriolis inertia forces of the points above 

and below the white diameter parallel to the y-axis create a 

moment of inertial forces directed against the y-axis and the 

moment of gravity.  

Let us show that the total moment of Coriolis forces of 

inertia is modulo equal to the moment of gravity, and opposite in direction. Thus, both actions 

are balanced. 

 The gyroscope is at relative rest with respect to the moving coordinates 𝑥, 𝑦, 𝑧, uniformly 

rotating around the vertical axis with the angular velocity of precession 𝝎пр. 

A

b

A 

𝒎𝑜(𝑚𝒈) 

Ф𝑐
𝐴  

X 

Y 

Z 

𝝎пр 

z 

y 

x 

𝐵 

Ф𝑐
𝐵  

𝑴𝑜(Фс) = −𝒎𝑜(𝑚𝒈) 
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 This means that the force of gravity and the forces of inertia are in equilibrium. We are 

interested in the condition of the invariability of the angle ∝, that is, the equality of the moments 

of these forces with respect to O. 

 

 Radius vector of point dm 𝝆 = 𝑶𝑪 + 𝒓  has its attached matrix  

                       𝜌 = (

0 −𝜌𝑧 𝜌𝑦

𝜌𝑧 0 −𝜌𝑥

−𝜌𝑦 𝜌𝑥 0
) = (

0 −𝑂𝐶 −𝑟𝑆𝑖𝑛𝜑
𝑂𝐶 0 𝑟𝐶𝑜𝑠𝜑

𝑟𝑆𝑖𝑛𝜑 −𝑟𝐶𝑜𝑠𝜑 0
) 

Coriolis force of inertia of point dm 

𝑑 Ф𝑐 = −2𝑑𝑚(𝝎пр × 𝝎 × 𝒓),       𝑑𝑚 = 𝛾ℎ𝑟𝑑𝑟𝑑𝜑 

The moment of this force relative to the support O 

𝒎𝑂(𝑑 Ф𝑐) = −2𝑑𝑚(𝝆 × 𝝎пр × 𝝎 × 𝒓) 

In matrix form 

(

𝑚𝑥(𝑑 Ф𝑐)

𝑚𝑦(𝑑 Ф𝑐)

𝑚𝑧(𝑑 Ф𝑐)

) = −2𝑑𝑚 (
0 −𝑂𝐶 −𝑟𝑆𝑖𝑛𝜑

𝑂𝐶 0 𝑟𝐶𝑜𝑠𝜑
𝑟𝑆𝑖𝑛𝜑 𝑟𝐶𝑜𝑠𝜑 0

) ∙ (

0 −𝜔пр𝐶𝑜𝑠𝛼 −𝜔пр𝑆𝑖𝑛𝛼

𝜔пр𝐶𝑜𝑠𝛼 0 0

𝜔пр𝑆𝑖𝑛𝛼 0 0
) ∙ 

∙ (
0 −𝜔 0
𝜔 0 0
0 0 0

) ∙ (
−𝑟𝐶𝑜𝑠𝜑
−𝑟𝑆𝑖𝑛𝜑

0

) = −2𝛾ℎ𝑟𝑑𝑟𝑑𝜑𝜔пр𝑟𝜔 (
−𝑂𝐶𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝛼 − 𝑟𝑆𝑖𝑛2𝜑𝑆𝑖𝑛𝛼

𝑂𝐶𝐶𝑜𝑠𝜑𝐶𝑜𝑠𝛼 + 𝑟𝐶𝑜𝑠𝜑𝑆𝑖𝑛𝜑𝑆𝑖𝑛𝛼
2𝑟𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑𝐶𝑜𝑠𝛼)

) 

𝜔пр =
2𝑂𝐶

𝑅2𝜔
𝑔 

𝑀𝑥( Ф𝑐) =
4𝑂𝐶𝛾ℎ

𝑅2
𝑔 [𝑂𝐶𝐶𝑜𝑠𝛼 ∫(𝑟2)

𝑅

0

𝑑𝑟 ∫ 𝑆𝑖𝑛𝜑

2𝜋

0

𝑑𝜑 + 𝑆𝑖𝑛𝛼 ∫(𝑟3)

𝑅

0

𝑑𝑟 ∫ 𝑆𝑖𝑛2𝜑

2𝜋

0

𝑑𝜑] = 

=
4𝑂𝐶𝛾ℎ

𝑅2
𝑔 [(−𝑂𝐶𝐶𝑜𝑠𝛼

𝑅3

3
𝐶𝑜𝑠𝜑)

0

2𝜋

+ 𝑆𝑖𝑛𝛼
𝑅4

4
[
𝜑

2
−

1

4
𝑆𝑖𝑛2𝜑]

0

2𝜋

] = 

= 𝛾ℎ𝜋𝑅2𝑔𝑂𝐶𝑆𝑖𝑛𝛼 = 𝑚𝑔𝑂𝐶𝑆𝑖𝑛𝛼                      𝑀𝑦( Ф𝑐) = 0,    𝑀𝑧( Ф𝑐) = 0 

We see that the moment of Coriolis inertia forces in modulo equal to the moment of 

gravity, and opposite in direction. This means that the force of gravity is balanced by the Coriolis 

forces of inertia, so the angle ∝ is unchanged. 

 

Role of transport inertial forces  

Find the portable acceleration of the gyroscope particle. 

 Radius vector of the gyroscope particle of mass  

𝑑𝑚 = 𝛾ℎ𝑟𝑑𝑟𝑑𝜑 

(h is the thickness of the disk, 𝛾 is the density of the disk material) is 

𝝆 = 𝑶𝑪 + 𝒓 

 Absolute particle velocity 

𝑽𝑎 = 𝝆̇ = 𝑶𝑪̇ + 𝒓̇ = 𝝎пр × 𝑶𝑪 + (𝝎пр + 𝝎) × 𝒓 = 𝝎пр(𝑶𝑪 + 𝒓) + 𝝎 × 𝒓 

 Absolute point acceleration 
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𝑾𝒂 = 𝝆̈ = 𝝎пр × (𝑶𝑪̇ + 𝒓̇) + 𝝎̇ × 𝒓 + 𝝎 × 𝒓̇ = 

= 𝝎пр × [𝝎пр × 𝑶𝑪 + (𝝎пр + 𝝎) × 𝒓] + 𝝎пр × 𝝎 × 𝒓 + 𝝎 × (𝝎пр + 𝝎) × 𝒓 =

= 𝑾𝒆 + 𝑾𝒓 + 𝑾𝒄 

In here 

𝑾𝒆 = 𝝎пр × 𝝎пр × 𝝆 + 𝝎 × 𝝎пр × 𝒓 

𝑾𝒓 = 𝝎 × 𝝎 × 𝒓 

𝑾𝒄 = 2𝝎пр × 𝝎 × 𝒓 

Transport force of inertia of particle dm 

𝑑 Ф𝑒 = −𝑑𝑚(𝝎пр × 𝝎пр × 𝝆 + 𝝎 × 𝝎пр × 𝒓),       𝑑𝑚 = 𝛾ℎ𝑟𝑑𝑟𝑑𝜑 

The moment of this force relative to the support O 

𝒎𝑂(𝑑 Ф𝑒) = −𝑑𝑚𝝆 × (𝝎пр × 𝝎пр × 𝝆 + 𝝎 × 𝝎пр × 𝒓) 

Let's write this ratio in matrix form in the coordinates 𝑥𝑦𝑧 

(

𝑚𝑥(𝑑 Ф𝑒)

𝑚𝑦(𝑑 Ф𝑒)

𝑚𝑧(𝑑 Ф𝑒)

) = −𝑑𝑚 (
0 −𝑂𝐶 −𝑟𝑆𝑖𝑛𝜑

𝑂𝐶 0 𝑟𝐶𝑜𝑠𝜑
𝑟𝑆𝑖𝑛𝜑 𝑟𝐶𝑜𝑠𝜑 0

) ∙ 

∙ (

0 −𝜔пр𝐶𝑜𝑠𝛼 −𝜔пр𝑆𝑖𝑛𝛼

𝜔пр𝐶𝑜𝑠𝛼 0 0

𝜔пр𝑆𝑖𝑛𝛼 0 0
) ∙ (

0 −𝜔пр𝐶𝑜𝑠𝛼 −𝜔пр𝑆𝑖𝑛𝛼

𝜔пр𝐶𝑜𝑠𝛼 0 0

𝜔пр𝑆𝑖𝑛𝛼 0 0
) . (

−𝑟𝐶𝑜𝑠𝜑
−𝑟𝑆𝑖𝑛𝜑

𝑂𝐶

) +

+ (
0 −𝜔 0
𝜔 0 0
0 0 0

) (

0 −𝜔пр𝐶𝑜𝑠𝛼 −𝜔пр𝑆𝑖𝑛𝛼

𝜔пр𝐶𝑜𝑠𝛼 0 0

𝜔пр𝑆𝑖𝑛𝛼 0 0
) (

−𝑟𝐶𝑜𝑠𝜑
−𝑟𝑆𝑖𝑛𝜑

0

) =

  

= 𝑑𝑚 [𝑟𝜔2
пр (

−𝑂𝐶𝐶𝑜𝑠2𝛼 𝑆𝑖𝑛𝜑 − 𝑟𝑆𝑖𝑛𝛼 𝐶𝑜𝑠𝛼𝑆𝑖𝑛2𝜑

𝑂𝐶(𝐶𝑜𝑠2𝛼 𝐶𝑜𝑠𝜑 + 𝑆𝑖𝑛𝛼𝐶𝑜𝑠𝜑) + 𝑟𝑆𝑖𝑛𝛼 𝐶𝑜𝑠𝛼𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑

𝑟𝑆𝑖𝑛𝜑(𝐶𝑜𝑠2𝛼 𝐶𝑜𝑠𝜑 + 𝑆𝑖𝑛𝛼𝐶𝑜𝑠𝜑) + 𝑟𝑆𝑖𝑛𝛼 𝐶𝑜𝑠𝛼𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑

)

+ 𝜔𝜔пр (
−𝑂𝐶𝐶𝑜𝑠𝛼 𝑆𝑖𝑛𝜑
𝑂𝐶𝐶𝑜𝑠𝛼 𝐶𝑜𝑠𝜑

𝑟𝐶𝑜𝑠𝛼 𝐶𝑜𝑠𝜑𝑆𝑖𝑛𝜑 + 𝑟𝐶𝑜𝑠𝛼 𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑
)] 

We leave it only 𝑆𝑖𝑛2𝜑 because 

∫ 𝑆𝑖𝑛𝜑

2𝜋

0

𝑑𝜑 = 0,   ∫ 𝐶𝑜𝑠𝜑

2𝜋

0

𝑑𝜑 = 0,   ∫ 𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑

  2𝜋

0

𝑑𝜑 = 0 

 

(

𝑚𝑥(𝑑 Ф𝑒)

𝑚𝑦(𝑑 Ф𝑒)

𝑚𝑧(𝑑 Ф𝑒)

) = (
−𝜔2

пр𝑆𝑖𝑛𝛼 𝐶𝑜𝑠𝛼 𝑟2𝑆𝑖𝑛2𝜑

0
0

) 𝛾ℎ𝑟𝑑𝑟𝑑𝜑 

 

The main moment of the transport forces of inertia with respect to the x-axis 

 

𝑀𝑥( Ф𝑒) = −𝜔2
пр𝛾ℎ𝑆𝑖𝑛𝛼 𝐶𝑜𝑠𝛼 ∫  𝑟3𝑑𝑟 ∫ 𝑆𝑖𝑛2𝜑𝑑𝜑 = −

4𝑂𝐶2

𝑅4𝜔2
𝑔2𝛾ℎ

𝑅4

4
[
𝜑

2
−

1

4
𝑆𝑖𝑛2𝜑]

0

2𝜋
2𝜋

0

𝑅

0

= −
𝛾ℎ𝜋𝑅2𝑂𝐶2

𝑅2𝜔2
𝑔2 = −𝑚 (

𝑂𝐶𝑔

𝑅𝜔
)

2

 



31 

 

We see that this moment tends to increase the angle 𝛼  , but it is small due to the high speed 𝜔 of 

the gyroscope's own rotation, and cannot be taken into account by an approximate theory 

 

 

Angular acceleration of the gyroscope 

The change in the direction of the angular velocity vector 𝝎 during regular precession is 

acceleration. Since the angular velocity modulus is constant, 𝜔 = 𝐶𝑜𝑛𝑠𝑡 

𝜺 = 𝝎̇ = 𝝎пр × 𝝎 

The vector  𝜺 is directed towards precession and the moment of gravity that generates it, 

and its modulus within the framework of the approximate theory is equal to  

𝜀 = 𝜔пр𝜔𝑆𝑖𝑛 ∝=
𝑂𝐶

𝜌2𝜔
𝑔𝜔𝑆𝑖𝑛 ∝=

𝑂𝐶𝑆𝑖𝑛 ∝

𝜌2
𝑔 

 Note that  

𝐽𝑧𝜀 = 𝑚𝜌2
𝑂𝐶𝑆𝑖𝑛 ∝

𝜌2
𝑔 = 𝑚𝑔𝑂𝐶𝑆𝑖𝑛 ∝= 𝑚о(𝑚𝑔) 

Interestingly, 𝜺  is not directed along z, but as well as the moment 𝒎о(𝑚𝑔). 

 

A gyroscope supported in the center of mass (𝑂𝐶 = 0) will not perform regular 

precession, since there is no moment of external forces. This is the gyroscope in the Cardan 

suspension. 

 
The axis of such a gyroscope retains its direction in an inertial frame of reference (the 

geocentric frame of reference is not inertial), which is widely used in navigational instruments 

such as the gyrocompass, the "artificial horizon" in airplanes, the gyroscopic stabilizers. 

Like Foucault's pendulum, such a gyroscope allows you to measure the speed of the 

Earth's rotation. 

 

Gyroscopic effects 

The gyroscopic effect is an unexpected rotation of the gyroscope axis, the cause of which 

was shown above. 

The gyroscopic effect is easy to observe by holding the axis of a rapidly rotating bicycle 

wheel with both hands. If you try to rotate the axle of the wheel in the vertical plane, the axle 

will rotate in the horizontal plane. 

The gyroscopic effect helps to ride a bicycle "without hands".  The kinetic moment of the 

bicycle wheels is directed to the left. When you lose your balance, you lean along with the axle 

of the front wheel, for example, to the left. At the same time, you apply a backward torque to the 

wheel axis. The end of the kinetic momentum vector of the front wheel, directed to the left, 

receives a velocity also directed backwards. The wheel turns to the left, which helps you regain 

your balance. 

If, during normal riding, you sharply turn the handlebar to the right without tilting the 

bike, then the gyroscopic effect will tilt the bike to the left, which is dangerous.  
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However, this maneuver is useful if you want to make a sharp left turn because it 

instantly creates the necessary tilt of you and the bike to the left.  

It is also useful for avoiding a trapdoor-sized obstacle. Your body continues to move 

straight by inertia, and the bike below you goes around the hatch. 

 

Free gyroscope on the plane 

 Suppose that the support plane is absolutely smooth (there is no friction). The gyroscope 

is affected by the mg and R, equal in modulus and opposite in direction.  

 Let us assume that the speed of proper rotation allows us to apply the simplified theory of 

the gyroscope and the kinetic moment of the gyroscope is directed along the z axis 

The moment of reaction R relative to the center of mass C creates a regular precession of 

the gyroscope axis z around the axis Z.  Looking from the end of the Z axis, we can see the 

direction of precession of the gyroscope axis 

counterclockwise.  

  Let us try to accelerate the precession by applying a 

force at point A of the gyroscope axis, directed behind the 

drawing - in the direction of the precession velocity of point 

A  

The moment of such a force relative to the center of 

mass C is directed in the plane of the drawing perpendicular 

to the z-axis to the Z-axis.  

According to theorem (2), the z-axis of the 

gyroscope will rotate to the vertical axis of precession Z, and will raise the center of mass C as 

much as possible.   

 Inference: Any force that seeks to accelerate precession raises the center of mass of the 

gyroscope. The opposite is also true. 

 

Columbus Egg 

 Now suppose that there is friction at the contact point O. The frictional force is directed 

against the sliding velocity of the point of contact O. This velocity is composed of the velocity 

from its own rotation and from the velocity of precession. The first one is directed behind the 

drawing, and it is much larger than the second one directed towards us.  The total speed of 

sliding is directed beyond the drawing, and the frictional force is directed towards us, in the 

direction of precession.  

 It has been shown that such a force raises the center of gravity of the gyroscope, aligning 

the z-axis of the gyroscope with the vertical axis of precession Z. The center of mass of the 

gyroscope will take the highest position on the Z-axis.  

The force of gravity, as well as the force of friction, will do a negative job, reducing the 

kinetic energy (angular velocity) of the gyroscope. 

 

 This effect explains the behavior of the so-called Columbus egg and the Chinese spinning 

top. 

 

z Z 

C 

mg 
R 

𝑲о 

A 

O

b
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A spun Chinese spinning top rises from the sphere to the leg. 

 The name Columbus Egg comes from the legend of how Columbus allegedly won a bet 

that he would put the egg "on his butt" while sailing. He simply broke the egg at one end and set 

the egg down. 

 If the egg-shaped body in the position (Fig a) is strongly twisted, the frictional force will 

lift the egg to an upright position (Fig b). 
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