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          Колебания и волны:  Практические  занятия по курсу физики  
 
 
. 
         Учебное пособие по теме "Колебания и волны" предназначено 
для  самостоятельной работы студентов физических специальностей 
институтов ФизМех, ИЭиТ, ИЭ, а также может быть использовано 
при подготовке к проведению практических  занятий по курсу общей 
физики. Данный сборник является расширенной и дополненной 
редакцией методического руководства к решению  задач по теме 
"Колебания и волны"[1], изданной в 1997 г. В новом издании 
добавлена новая глава "Электрические колебания" и значительно 
расширен список задач для самостоятельного решения. Учебное 
пособие  содержит два занятия по теме "Механические  колебания", 
одно занятие по теме "Упругие волны", одно занятие по теме 
"Электрические колебания" и два занятия по теме "Электромагнитные 
колебания и волны". 
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ВВЕДЕНИЕ  
 

Настоящее методическое пособие является продолжением цикла 
практических занятий по курсу общей физики для физических 
специальностей. Опыт использования существующих пособий этого 
цикла [1,2,3] показал их практическую ценность как при подготовке 
семинарских занятий преподавателями, так и для самостоятельной 
работы студентов. В данное пособие включен материал, относящийся к 
различным видам колебательного движения, традиционно 
рассматриваемым в рамках курса общей физики: 
1. Кинематика колебательного движения. Сложение гармонических 

колебаний. 
2. Динамика механических колебаний. Вычисление частот 

механических колебаний. Колебания с несколькими степенями 
свободы. 

3. Упругие волны. Звуковые колебания. Сферические и стоячие волны. 
Эффект Доплера 

4. Электрические колебания, свободные и вынужденные колебания в 
электрических цепях, последовательный и параллельный LCR 
колебательный контур, сглаживающий RC фильтр. 

5. Электромагнитные волны. Напряженности электрического и 
магнитного полей. Объемная плотность энергии и плотность потока 
энергии в электромагнитной волне. 

6. Излучение электромагнитных волн. Радиационное торможение 
электронов. Рассеяние света. 

Совместное рассмотрение этих вопросов обусловлено общими 
закономерностями различных видов колебательных движений. В тоже 
время, данное пособие построено таким образом, чтобы отдельные её 
главы были в значительной степени независимы, что позволяет 
использовать её и в том случае, когда различные виды колебательного 
движения рассматриваются в разных разделах курса общей физики. 

Значительная часть задач из рассмотренные в пособии выбрана 
нами из задачника И. Е. Иродова [5], поскольку уровень сложности 
этого задачника в наибольшей степени соответствует уровню  изучения 
физики на физических специальностях, и этот задачник традиционно 
используется при проведении практических занятий по общей физике в 
СПбПУ. Каждая задача нумеруется двумя цифрами, разделенными 
точкой. Первая цифра означает номер занятия, вторая - номер задачи в 
пределах занятия. Если задача взята из задачника И. Е. Иродова [5], то в 
скобках приводятся номер задачи в этом задачнике по изданию [5] В 
конце каждого занятия приводится список задач, предлагаемых  для 
самостоятельного решения.  В данном руководстве мы используем 
гауссову систему единиц, как наиболее естественную при рассмотрении 
электромагнитных явлений [6] и принятую при изучении курса физики 
на физических факультетах.  
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ЗАНЯТИЕ  I 

 
Тема занятия: Кинематика колебательного движения. 
 
В предлагаемых задачах обсуждаются следующие вопросы: 
 
1.1 - каноническое представление гармонических колебаний. 
 
1.2 - связь колебательного движения и статистического подхода к 

изучению физических явлений. 
 
1.3.- разложение двумерного колебательного движения на взаимно 

перпендикулярные гармонические составляющие. 
  
1.4 - сложение двух однонаправленных гармонических колебаний с 

близкими частотами. 
 
 

Задача 1.1 (4.2) 
 

Некоторая точка движется вдоль оси х по закону x = A Sin2(t - 4). 
Найти: 
а) амплитуду и период колебаний; изобразить график x ( t ); 
б) проекцию скорости vx как функцию координаты х; изобразить график 

vx ( x ). 
 

Решение 

а) Преобразуем исходное уравнение к виду: 

x = A Sin2( t - 4 ) = A2(1 - Cos( 2t - 24 )) =  

=A2(1 - Sin2(t) ). 

Полученное уравнение описывает гармонические колебания с частотой  
2  и амплитудой  А2. Период этих колебаний равен  T = 2(2) = 
. График зависимости  х(t) приведен на рисунке 1.1. 

б) Проекция скорости определяется производной координаты частицы 
по времени  

  v dx
dt

A Cos tx     (2 ) . 
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Возводя это соотношение в квадрат и учитывая, что Sin2(2t) = (2x-
A)2/A2, получаем 

  vx
2 = 42x(A-x). 

График зависимости vx(x) ( так называемая фазовая траектория ) 
приведен на рисунке 1.2 

    Рис. 1.1                                      Рис. 1.2          

 

 

Задача 1.2 ( 4.6 ) 

Частица совершает гармонические колебания вдоль оси х по закону  x = 
aCos(t) . Считая вероятность  Р  нахождения частицы в интервале от  - 
а  до  + а равной единице, найти зависимость от  х  плотности 
вероятности  dPdx , где dP - вероятность нахождения частицы в 
интервале от   х  до х + dx. Изобразить график dPdx в зависимости от х. 

Решение 

Вероятность обнаружить частицу в заданной области пространства 
пропорциональна интервалу времени, проводимому ей в этой области. 
Так для участка от х до (х + dx): 

  dP( x, x + dx )  dt , или  dP ( x, x + dx ) = C dt , 

где  С - некоторая постоянная, которую можно определить 
впоследствии из условия нормировки вероятности. Выражая dt через dx 
и скорость частицы 

  v dx
dt

a Sin t a Cos t a x         ( ) ( )1 2 2 2  , 

получаем 
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dP C dx
v

C dx
a x

 
 2 2

.  

Определим константу С из условия нормировки dP  1 (частица с 

вероятностью P=1 находится в интервале 0<x<a): 

  1

1
2









 





 















C

d x
a
x
a

C x
a

C
a

a

a

a

 



arcsin ,  

откуда  С = . 

 Таким образом, окончательно для 
плотности вероятности получаем 
выражение: 

  dP
dx a x




1
2 2

. 

График этой функции приведен на 
рисунке 1.3 

 

Задача 1.3 ( 4.11) 

Точка движется в плоскости  ху  по закону  x = A Sint , y = B Cost, где 
A,B, - постоянные. Найти: 

а) уравнение траектории точки у(х) и направление движения по этой 
траектории; 

б) ускорение точки в зависимости от ее радиус - вектора относительно 
начала координат. 

Решение 

Исключим параметр  t  из выражений для х и у . Для этого возведем 
их в квадрат и сложим: 

   x
A

y
B

2

2

2

2 1  . 

                                             d P d x
  

                                                                          x
                   - a                   0                    a  

Рис 1.3 
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Это и есть уравнение для траектории. Она представляет собой эллипс и 
изображена на рисунке 1.4. Направление движения можно определить 
из начальных условий. Начальное положение точки хt=0 = 0; yt=0 = B. 
Для проекций скорости получаются следующие выражения: 

v dx
dt

A Cos t

v dy
dt

B Sin t

x

y

 

  









 

 

( )

( ) .
  

 

Рассматривая совместно формулы для начального положения и 
начальной скорости, убеждаемся, что движение происходит против 
часовой стрелки. 

Для нахождения ускорения продифференцируем проекции 
скорости по времени: 

w
dv
dt

A Sin t x t

w
dv
dt

B Cos t y t

x
x

y
y

    

    









  

  

2 2

2 2

( ) ( )

( ) ( ) .
 

Представляя ускорение в векторном виде, получим 

w i j i j r      w w x yx y  2 2( )  , 

где  i, j- орты осей х и у,  r - радиус вектор точки. 

 

Задача 1.4 ( 4.9 ) 

При сложении двух гармонических колебаний одного направления 
результирующее колебание точки имеет вид: x = a Cos(2,1t) Cos (50,0t), 
где t - в секундах. Найти круговые частоты складываемых колебаний и 
период биений результирующего колебания. 

Pешение 

Рассмотрим два колебания одного направления и близких частот 
некоторой точки. Частоты этих колебаний равны, соответственно,   и  
 + , где   . Обозначив отклонения точки от положения 
равновесия через  1 и 2 , можно записать 

    1 2  A C os t A C os t( ) ; ( ( ) ) . 

                                      у
                                М

                                                                   х

 
Рис. 1.4 
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Суммарное колебание имеет вид: 

       


 
   























1 2 2

2 2
ACos t Cos t . 

Из-за малости  величина, взятая в фигурные скобки, медленно 
(относительно второго сомножителя) изменяется со временем. Поэтому 
можно условно считать величину 

   2
2

ACos t













 

зависящей от времени амплитудой колебания, происходящего на 
частоте (  + 2 ).  

  
 

Pис. 1.5. 

График зависимости от времени суммарного отклонения от положения 
равновесия (t) приведен на рисунке 1.5. Минимальное время, через 
которое повторяется отклонение точки на максимальную амплитуду, 
называется периодом биений. Для данного случая он равен 

   Tб 
2


. 

Решая совместно два уравнения  2 = 2,1  и   + 2 = 50,0  , 
находим 

  Тб = 1.5 с   и    = 47.9 радс ;  +  = 52.1 радс . 
Задачи, рекомендуемые по этой теме для домашнего задания:  4.3/4.3, 
4.4/4.4, 4.13/4.10, 4.15/4.12. 
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ЗАНЯТИЕ  2 

 
 
Тема занятия: Динамика колебательного движения. 
 
При решении задач предполагается знание законов Ньютона и 
основных формул для нахождения энергии и вычисления работы. В 
предлагаемых задачах обсуждаются следующие вопросы: 
2.1 - вычисление периода гармонических колебаний на для движения 

частицы в одномерном потенциальном поле. 
2.2 - плоское колебательное движение частицы ( двумерное  движение); 
2.3 - нахождение траектории движения частиц, совершающих два 

взаимно перпендикулярных колебания, с использованием 
простейших приемов решения систем дифференциальных 
уравнений; 

2.4 - колебания физического маятника, нахождение средних значений; 
2.5 - колебания систем с несколькими степенями свободы, обобщенные 

координаты. 
 
 

Задача 2.1 (4.14 ) 

 

Частица массой m находится в одномерном потенциальном поле, где ее 
потенциальная энергия зависит от координаты  х как  U (x) = a  x2  -  b  
x , где  а  и  b  - некоторые положительные постоянные. Найти период 
малых колебаний частицы около положения равновесия. 

 

Решение 

Зная вид потенциальной энергии, можно определить силу, 
действующую на частицу в таком поле. Так как силовое поле 
одномерно, то 

   F x dU
dx

a
x

b
x

( )    
2

3 2
. 

Для возникновения колебаний необходимо существование положения 
устойчивого равновесия. В данном случае такое положение будет в 
точке с координатой  x0 = 2ab ( в этой точке сила F(x0)=0). Раскладывая 
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F (x) в ряд вблизи точки  х0 и сохраняя лишь члены первого порядка 
малости по x =х-х0 (отклонению от положения равновесия ), получаем: 

  F x a
x x

b
x x

b
x

x b
a

x kx( )
( ) ( )


 


 

        
2

80
3

0
2

0
3

4

3
, 

где k b a 4 38/ . Видно, что сила F(x) подчиняется закону Гука. 
Отметим, что это справедливо  только для малых колебаний точки, то 
есть когда x   х0 . Тогда II закон Ньютона для рассматриваемого 
движения можно записать в виде  

   m d x
dt

kx
2

2

     или  ̈ݔ + ௞
௠
ݔ	 = 0. 

Это уравнение гармонических колебании с частотой  0
2 = km  и 

периодом T, равным 

   T m
k

a
b

ma 2 4 2
2

  . 

 
 

Задача 2.2 ( 4.37/4.38 ) 
 
Частица массы m движется под действием силы F r m  , где  - 
положительная постоянная, r - радиус-вектор частицы относительно 
начала координат. Найти траекторию ее движения, если в начальный 
момент r=r0i  и скорость v=v0j, где i и j - орты осей х и у. 
 

Решение 
 

Динамика любого механического движения , в том числе и 
колебательного, определяется II законом Ньютона. Применительно к 
данной задаче он выглядит так: 

 
    m ma r  . 
 
Проектируя это соотношение на оси х и у, получаем два уравнения: 
 
ݔ̈   + ݔ = ݕ̈    ;0 + ݕ = 0.                        (1) 
 
Из условия задачи следуют начальные условия колебаний частицы: 
 
  хt=0 =  r0            vxt=0 = 0 
  yt=0 =  0             vyt=0 = v0     .                                              (2) 
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Общее решение уравнений (1) x(t) = A Cos(t + ) ; y(t) = B Cos(t + ), 
где  =  . Учитывая начальные условия (2), получаем систему 
уравнений для определения неизвестных А, В,  и : 
 

  
A C o s r
B C o s

A S in
B S in v




 
 








 
 





0

00
0

 

 
Решая эту систему, находим 
 

  = 0 ;  = -   2  ;  А = r0  ;  B = v v0 0

 
 . 

 
Тогда зависимость координат от времени примет следующий вид 
 
   x ( t ) = r0 Cos (t), 

   y ( t ) = v0


 Sin (t). 

 
Нетрудно исключить из этих уравнений время (см. Задачу 1.3), и в 
результате траектория частицы будет иметь вид эллипса: 
 

   x
r

y
v0

2

0

2

1






 







  . 

 
Это результат сложения двух взаимно перпендикулярных колебаний 
одинаковой частоты. 
 

 
Задача 2.3 ( 4.44 ) 

 
Частица массы m движется в плоскости ху  силы, зависящей от 
скорости по закону  
F i j a y x( ) , где а - положительная постоянная, где i и j - орты осей х 
и у. В начальный момент t = 0 частица находилась в точке х = у = 0 и 
имела скорость v0  в направлении орта j . Найти закон движения 
частицы  х ( t ), у ( t ), а также уравнение ее траектории. 
 

Решение 
 
 Запишем II закон Ньютона для заданного движения: 
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   m d
d t

a d y
d t

d x
d t

2

2

r i j 





 

 
и спроектируем это соотношение на оси х и у 
 

 
m d x

d t
a d y

d t
m d y

d t
a d x

d t

2

2

2

2



 









. 

 
Полученную систему уравнений проще всего решать следующим 
образом. Преобразуем первое уравнение к виду 
 

  d
d t

m d x
d t

a y




 0 . 

 
Для того, чтобы это равенство было справедливо в любой момент 
времени, необходимо, чтобы функция, стоящая в скобках, не зависела 
от времени 
 

  m dx
d t

ay C o nst C   1 . 

 
Определить значение константы С1 можно из начальных условий. Так 

как dx
dt
t=0 = yt=0 = 0, то для константы получаем значение С1 = 0. 

Полученное соотношение m dx
d t

ay  подставим во второе уравнение 

системы: 
 

  m d y
d t

a
m

y
2

2

2

     или  ̈ݕ + ௔మ

௠మ ݕ = 0. 

 

Это уравнение гармонических колебаний с частотой  
a
m

, его 

решение 
 
  y( t ) = Ay Sin( t + y ) .  
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Из начальных условий  уt=0 = 0 ;  dy
dt

t=0 = v0 , получаем у = 0 и Ау = 

mv
a

0 . Используя первое полученное соотношение m dx
d t

ay , 

находим х( t ): 
 

 x t m v
a

S in t d t C m v
a

C o s t C( ) ( ) ( ) ( )    0
2

0
2   . 

 

Зная, что хt=0 = 0 , получаем для константы  С2 = mv
a

0   и  х ( t ) = mv
a

0 (1 

- Cos(t))). Исключая время из зависимостей х(t)  и у(t), получаем 
уравнение траектории - окружность: 
 
    

y x a
mv

a
mv

2

0

2

0

2

 






 







 . 

 
 

Задача 2.4 ( 4.51 ) 
 
Однородный стержень массы m и длины L совершает малые колебания 
вокруг горизонтальной оси, проходящей через его верхний конец. 
Найти среднюю за период колебания кинетическую энергию стержня, 
если в начальный момент его отклонили от вертикали на угол 0 и 
сообщили ему угловую скорость ̇. 
 

Решение 
 

Кинетическую энергию стержня можно определить по формуле 

ܶ = 	 ௃̇
మ

ଶ
,  

где J mL
2

3
 - момент инерции стержня относительно точки подвеса, а 

̇. - производная по времени от угла отклонения стержня от вертикали. 
Средняя за период кинетическая энергия стержня будет равна 
 

〈ܶ〉 = 	௠௅మ

଺
〈̇ଶ〉,  

 
Для нахождения ̇(ݐ).запишем основное уравнение вращательного 
движения связывающее вращающий момент М с угловым ускорением̈: 
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J d
d t

M m g L2

2 2
    . 

 
После преобразований получаем 
 

	̈ +
3݃
ܮ2

 = 0.	 
 
Это уравнение гармонических колебаний с частотой  0

2 = 3g  2L. Его 
решения определяют угловое смещение стержня:  = mSin(0t+0 ) , а   
̇ = 0m Cos (0t + 0). Используя начальные условия  t=0 = 0  и   ̇t=0 

= ̇଴, получаем   ௠
ଶ = ଴

ଶ + ̇బ
మ

బ
మ

̇
. Среднее значение <̇2> теперь можно 

определить следующим образом 
 
   〈̇ଶ〉 = ௠

ଶ ଴ଶ	〈ܿݏ݋ଶ(଴ݐ + ଴)〉 = 	
ଵ
ଶ
௠
ଶ ଴ଶ .	 

 
Окончательно,  

〈ܶ〉 = 	௠௅మ̇బ
మ

ଵଶ
+ ௠௚௅బ

మ

଼
. 

 
 

Задача 2.5 (4.67 ) 
 
 
Модель молекулы  СО2 - три шарика, соединенные одинаковыми 
легкими пружинками и расположенные в положении равновесия вдоль 
одной прямой. Такая система может совершать продольные колебания 
двух типов, как показано стрелками на рисунке 2.1. Зная массы атомов, 
найти соотношение частот этих колебаний. 
 

 
 

Рис. 2.1 
 

Решение 
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В молекуле СО2 возможны два вида колебаний - продольные и 
поперечные. Если рассматривать только продольные колебания, то их 
может быть всего два типа, изображенных на Рис. 2.1. Это означает, что 
по отношению к продольным колебаниям такая система обладает двумя 
колебательными степенями свободы. Следовательно, поведение такой 
системы может быть описано двумя величинами, которые будут 
изменяться со временем по гармоническому закону. Такие величины 
называются обобщенными координатами, а колебания, им 
соответствующие, - нормальными модами. Покажем, что 
изображенным на рисунке колебаниям соответствуют обобщенные 
координаты, являющиеся комбинацией смещений атомов из положений 
равновесия. 

Потенциальная энергия молекулы в произвольный момент 
времени, когда смещения атомов С, О1 и О2 равны хС , хО1 и хО2 , может 
быть определена как энергия двух сжатых пружин: 

 

  U x x x k x x k x x
C O O

O C O C( , , ) ( ) ( )
1 2

1
2

2
2

2 2





 . 

 
Вычисляя силы, действующие на атомы со стороны пружинок по 
формуле 
 

    F d U
d xi

i
  , 

 
где  i - индекс атома, получим уравнения движения для каждого атома: 
 

  

 d x
dt m

dU
dx m

k x x k x x

d x
dt m

dU
dx

k
m

x x

d x
dt m

dU
dx

k
m

x x

C

C C C
O C O C

O

O O O
O C

O

O O O
O C

2

2 1 2

2
1

2
1

1

2
2

2
2

2

1 1

1

1

     

    

    















( ) ( )

( )

( ) .

 

 
Напомним, что буквой k обозначается жесткость пружинки. Данная 
система уравнений содержит только два линейно независимых 
уравнения, описывающих колебания атомов. Это связано с тем, что при 
колебаниях центр масс системы должен покоится (внешних сил нет). 
Если из второго уравнения системы вычесть третье, то получим: 
 

   
d x x

dt
k

m
x xO O

O
O O

2
1 2

2 1 2

( )
( )


   . 
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Затем, сложив второе и третье уравнения системы, вычтем результат из 
первого уравнения умноженного на два. В результате получится 
уравнение вида 
 

     d
dt

x x x k m m
m m

x x xC O O
C O

O C
C O O

2

2 1 2 1 22 2 2   


 
( ) . 

 
Если обозначить  q1 = xO1 - xO2 ,  q2 = 2xC - xO1 - xO2 , то эти величины и 
будут называться обобщенными координатами, а соответствующие им 
гармонические продольные колебания будут происходить с частотами 
 

    1 2

2
 

k
m

k m m
m mO

O C

C O

; ( ) . 

 
Их отношение равно (с учетом масс атомов mО=16 а.е.м. и mС=12 а.е.м) 

   


2

1

1 2 1 1
3

1 9   
m

m
O

C

, . 

 
Задачи, рекомендуемые по этой теме для домашнего задания: 4.23/4.22, 
4.33/4.33, 4.43/4.57, 4.54/4.59, 4.59/4.64. 
 
 
 

ЗАНЯТИЕ 3 
 
 
Тема  занятия: Упругие волны. Акустика. 
 
В предлагаемых задачах рассматриваются следующие вопросы: 
 
3.1 -  уравнение волны; 
 
3.2 -преобразование системы отсчета. Эффект Доплера; 
 
3.3 - свойства  сферических волн; 
 
3.4 -  поток энергии в волновых процессах; 
 
3.5 - стоячие волны.  
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Задача  3.1( 4.170 ) 
 
Плоская гармоническая волна с частотой w распространяется со 
скоростью v в направлении, составляющем углы   , ,  с осями х, у, z. 
Найти разность фаз колебаний в точках среды с координатами х1, у1, z1 
и х2, у2, z2. 
 

Решение. 
 

Уравнение плоской волны, распространяющейся в произвольном 
направлении, задаваемом единичным вектором n, образующим с осями 
координат x, y, z углы   , , , имеет вид: 
 

        r, krt a t  cos  
 

Здесь волновой вектор k определяется как k n
2  


. Тогда искомая 

разность фаз колебаний в точках r r1 2 и  есть  
 

             = -  = k                     .1 2  kr kr x x y y z z1 2 1 2 1 2    cos cos cos
 
Учитывая связь волнового числа k , скорости волны v  и ее  частоты w: 
k w/v , находим окончательно 
 

              =  
v

                     . x x y y z z1 2 1 2 1 2    cos cos cos  

 
 

Задача 3.2 ( 4.173 ) 
 
В среде К распространяется упругая плоская волна    a t kxcos  . 
Найти уравнение этой волны в K'-системе отсчета, движущейся в 
положительном направлении оси х с постоянной скоростью V по 
отношению к среде К. Исследовать полученное выражение. 
 

Решение. 
 

Координата точки в направлении оси x в движущейся системе K' 
будет отличаться от координаты в неподвижной системе K:   x x V t
. Для определения вида уравнения волны в системе отсчета K' выразим 
координату х в уравнении волны волны в системе отсчета K через 
значение координаты той же точки х' в подвижной системе отсчета K': 
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           a t k x Vt a t kxcos ( ) cos (  - kV)  

 
Множитель перед величиной t в полученном выражении представляет 
собой по определению частоту волны   в подвижной системе отсчета 
K' 
 

   ( )kV . 
 
Видно, что в подвижной системе отсчета частота волны оказывается 
меньше чем в исходной системе К. Это изменение частоты известно как 
эффект Доплера. Действительно, если в последнем соотношении для 
частоты волны   выразить значение волнового вектора k через 
частоту волны   и её скорость v , k= /v, то мы получим известную 
формулу эффекта Доплера 
 

  





   -  V
v

  .1  

 
С увеличением скорости системы К’ частота волны будет 

уменьшаться. Если скорость системы V превысит скорость волны v, 
частота   в уравнении волны формально становится отрицательной. 
Это означает, что фактически в системе K’ волна теперь 
распространяется в противоположном направлении или, другими 
словами, приемник в подвижной системе отсчета K’ раньше 
зафиксирует колебания, испущенные источником колебаний системы К 
в более поздний момент времени.  
 
 

Задача  3.3 ( 4.179 ) 
 
Найти радиус-вектор, характеризующий положение точечного 
источника сферических волн, если известно, что этот источник 
находится на прямой между точками с радиус-векторами r1 и r2, в 
которых  амплитуды колебаний частиц среды равны а1 и а2. Затухание 
волны пренебрежимо мало, среда однородная. 
 

Решение. 
 

Уравнение сферической волны имеет вид: 
 

     
a
r

t k rc o s , 
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при этом амплитуда волны убывает обратно пропорционально длине 
радиуса-вектора r, проведенного в выбранную точку. Пусть r 
обозначает радиус-вектор, проведенный в точку, где расположен 
источник волны. Тогда вектора, проведенные из источника в точки, 
характеризующиеся радиус-векторами r1 и r2, имеют вид: R r r1 1   и 
R r r2 2  , соответственно. Амплитуды волны в этих точках равны 
a a

R1
1

  и a a
R2

2
 . Отсюда находим связь между величинами 

векторов R1 и R2 R a R a1 1 2 2 . Учитывая, что вектора R1 и R2 
направлены в противоположные стороны, имеем: 
 

a a   1 1 2R R  2 .  
  
Подставляя в последнее равенство выражения для векторов R1 и R2 
находим выражение для радиус-вектора r: 
   

r r r= a  a  
a a

1 1 2 2

1 2




. 

 
 

Задача  3.4 ( 4.183 ) 
 

Точечный изотропный источник звука  находится на  
перпендикуляре к плоскости кольца, проходящем через его центр О. 
Расстояние между точкой О и источником l = 1,00 м, радиус кольца  R = 
0,50 м. Найти средний поток энергии через площадь, ограниченную 
кольцом, если в точке О интенсивность звука  I0  = 30 мкВт/м2. 
Затухание волн пренебрежимо мало. 
 

 
Решение. 

 
   Полный поток энергии через площадь S, ограниченную кольцом, 
выражается интегралом от вектора плотности потока энергии j: 
  

W d w
S

   jds  

 
Разобьем всю площадь, ограниченную кольцом, на малые зоны 
кольцевой формы радиусом r и толщиной dr. Площадь такой зоны, 
находящейся на расстоянии r от центра кольца, равна ds rdr 2 . 
Найдем поток энергии через такую зону dw. При этом учтем, что 
величина вектора плотности потока энергии меняется в зависимости от 
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расстояния до центра кольца. Это связано с тем, что с возрастанием 
расстояния r увеличивается расстояние от источника звука до 
выбранной кольцевой зоны. Так как источник звука изотропен, он 
испускает сферическую волну. Амплитуда сферической волны убывает 
обратно пропорционально расстоянию до точки наблюдения. 
Поскольку плотность энергии пропорциональна квадрату амплитуды 
волны, плотность потока энергии обратно пропорциональна квадрату 
расстояния от источника до точки наблюдения. Интенсивность звука в 
центре кольца, расположенном на расстоянии l от источника звука, 
равна I0 . Поэтому интенсивность волны в точках кольцевой зоны, 
расположенной на расстоянии r от центра кольца. Есть 
 

I I l
y

 0

2

2
 ,  

 
где y l r 2 2  - расстояние от источника звука до точек выбранной 
кольцевой зоны. Поэтому 

 

d w d j ds
I l

l r
l

l r
rdr

 
j s == cos . 0

2 2 2 2
2  

 
Здесь угол   есть угол между нормалью к кольцевой зоне и вектором 
плотности потока энергии в точках выбранной зоны. Подставляя 
полученное выражение для потока энергии через бесконечно малую 
площадь ds в выписанный выше интеграл, найдем для полного потока 
энергии: 
  

 
w dw I l

r d r
l r

R

S

 


 2 0
3

2 2 3 2
0

 .  

 
Выполняя интегрирование, найдем окончательно для потока энергии w: 
 

w I l
l
R

 

 























2 1 1

1
0

2

2
   

 
Подставляя численные данные в полученное соотношение, найдем 
величину среднего потока энергии через площадь, ограниченную 
кольцом w = 20 мкВт. 
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Задача  3.5 ( 4.169 ) 

 
Для определения скорости звука в воздухе методом  акустического 
резонанса  используется труба с поршнем и звуковой мембраной, 
закрывающей один из ее торцов. Найти скорость звука, если расстояние 
между соседними положениями поршня, при которых наблюдается 
резонанс на  частоте n = 2000 Гц, составляет l = 8,5см. 
 
 

Решение. 
 

При возбуждении звуковых колебаний в трубе образуется стоячая 
волна, при этом у поршня, закрывающего один из концов, всегда 
располагается узел. Если длина трубы такова, что в месте расположения 
звуковой мембраны, находится пучность волны, то колебания 
мембраны будут наибольшими - наступает акустический резонанс. 
Поскольку расстояние между узлами стоячей волны составляет  2 , где 
 - длина звуковой волны, а расстояние между пучностью и 
ближайшим узлом есть  4 , то условие наступление резонанса можно 
записать в виде: 

 

L n 
 
2 4

,  

 
т.е. на длине трубы L укладывается n узлов плюс одна пучность.  Длина 
трубы зависит от положения поршня. Два соседних положения поршня, 
при которых наблюдается резонанс, отличаются тем  что на длине 
трубы появляется еще один узел. Поэтому  
 

l L Ln n  1 2
    

 
Учитывая связь длины волны с частотой и скоростью звука   v  , 

найдем выражение для скорости звука через разность длин l трубы, при 
которых наступает резонанс: 
 

v = 2 2 0 085 2000 340l    . м/с. 
 
 



 22

Задачи, рекомендуемые по этой теме для домашнего задания: 
4.152/4.172, 4.157/4.178, 4.163/4.184, 4.170/4.197, 4.178/2.207, 
4.186/4.215. 

 
 
 

ЗАНЯТИЕ  4 
 
 
Тема занятия: электрические колебания, свободные и вынужденные 
колебания, последовательный и параллельный LCR колебательный 
контур, сглаживающий RC фильтр.   
 
В предлагаемых задачах обсуждаются следующие вопросы: 
4.1 – резонатор и LC-контур, нахождение собственной частоты 

колебаний, 
4.2 – свободные незатухающие колебания в LC-контуре, получение 

закона колебаний с учетом начальных условий; 
4.3 – свободные затухающие колебания в параллельном LCR-контуре, 

нахождение периода и коэффициента затухания колебаний; 
4.4 –нахождение закона затухающих колебаний в последовательном 

LCR-контуре с учетом начальных условий; 
4.5 - вынужденные установившиеся колебания в последовательном 

LCR-контуре, добротность контура, резонанс в колебательном 
контуре; 

4.6 – работа сглаживающего RC-фильтра. 
 
 

Задача 4.1 ( 4.113 ) 

 

Найдите собственную частоту  резонатора, показанного на рисунке 
4.1, считая, что плоская часть является конденсаторам с малым зазором 
между пластинами d << a, где  a – ширина пластин, а цилиндрическая 
часть с радиусом r >> d является индуктивностью. Предполагается, что 
размеры резонатора много меньше длины электромагнитной волны с 
частотой  :  = 2c/ >> r,a. 
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Рис. 4.1                                                Рис. 4.2 

Решение 

Указанный резонатор представляет собой LC контур, 
электрическая схема которого показанна на рисунке 4.2. Электрическое 
поле локализовано в тонком зазоре между пластинами. Можно считать, 
что электрический заряд успевает равномерно распределиться по все 
площади пластины S = ab (b обозначает  длину резонатора), поскольку 
ее размеры намного меньше длины волны  >> a,b. Емкость такого 
плоского конденсатора равна C = 0S/d. Ток по боковой поверхности 
цилиндра I приводит к изменению величины заряда пластин q(t) 

(ݐ)ܫ = 	 ௗ௤
ௗ௧

,                                          (4.1) 

и создает внутри цилиндра магнитное поле, как в соленоиде, с 
индукцией B(t) = 0I(t)/b. Соответственно, индуктивность такого 
цилиндра равна L = 0r2/b. Переменное магнитное поле создает, 
вообще говоря, в цилиндре вихревое электрическое поле. Однако оно 
слабо по параметру r/ << 1 и им можно пренебречь. Таким образом, 
электрическое и магнитные поля оказываются локализованными в 
разных частях резонатора, а их динамика может быть поэтому описана 
электрической схемой, изображенной на Рис. 4.2.  

Эта электрическая схема представляет собой LC контур, в котором 
возможны незатухающие электрические колебания. Сопротивлением 
металлических стенок резонатора мы здесь пренебрегаем. Для 
нахождения собственной частоты колебаний применим к LC контуру 
закон Кирхгофа для замкнутой цепи, что в данном случае сводится к 
равенству ЭДС электромагнитной индукции цилиндра  = - LdI/dt 
напряжению на конденсаторе U = q/C: 

ܮ− ௗூ
ௗ௧
= ௤

஼
.                                        (4.2) 

С учетом связи тока и заряда (4.1) это уравнение переписывается в виде  
дифференциального уравнение колебаний заряда q(t) конденсатора: 

ௗమ௤	
ௗ௧మ

+ ଵ
௅஼
ݍ = 0.                 (4.3) 
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Его решением являются гармонические колебания с частотой  

	 = ଵ
√௅஼

= ට
ௗ

బబ௥
మ௔

.     (4.4) 

 
 

Задача 4.2 ( 4.115 )  

 

Электрическая цепь, изображенная на Рис. 4.3, имеет пренебрежимо 
малое активное сопротивление. Левый конденсатор зарядили до 
напряжения U0 и затем в момент времени t = 0 замкнули ключ K. Найти 
зависимость от времени напряжения U1,2(t) на обоих конденсаторах. 

 

            Рис. 4.3 

Решение 

Обозначим заряд левого конденсатора, как q1, а правого, как q2, при 
этом знаки зарядов конденсаторов выберем в направлении обхода 
контура против часовой стрелки, т.е. у левого конденсатора при q1 > 0 
положительно заряжена нижняя обкладка, а у правого конденсатора при  
q2 > 0 положительно заряжена верхняя обкладка. Закон сохранения 
электрического заряда в таких обозначениях записывается, как 

ଵݍ − ଶݍ = ଴ݍ = ܥ ଴ܷ.                           (4.5) 

Применим к контуру на Рис. 4.3 закон Кирхгофа для замкнутой цепи, 
что в данном случае сводится к равенству ЭДС электромагнитной 
индукции катушки  = - LdI/dt сумме напряжений на обоих 
конденсаторах U1,2 = q1,2/C 

ܮ− ௗூ
ௗ௧
= ௤భ

஼
+ ௤మ

஼
.                                        (4.6) 

С учетом закона сохранения электрического заряда в виде (4.5) и I = 
dq1/dt,  это уравнение переписывается, как уравнение второго порядка 
для заряда левого конденсатора q1(t): 
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ௗమ௤భ	
ௗ௧మ

+ ଶ
௅஼
ଵݍ =

௎బ
௅

.                 (4.7) 

Это уравнение представляет собой неоднородное уравнение 
гармонических колебаний, вызванных приложением постоянной силы. 
Его решение находим в виде суммы частного решения CU0/2 и общего 
решения соответствующего однородного уравнения 

ଵݍ =
஼௎బ
ଶ
+ ݐ)ݏ݋ܿܣ + ),			 = ට ଶ

௅஼
,                       (4.8) 

где константы  A = CU0/2  и =0 находятся из начальных условий q1 = 
CU0 и  I = d q1/dt=0. В итоге искомые зависимости зарядов 
конденсаторов оказываются равными  

ଵݍ =
஼௎బ
ଶ
(1 + ,(ݐݏ݋ܿ ଶݍ = ଵݍ − ܥ ଴ܷ =

஼௎బ
ଶ
ݐݏ݋ܿ) − 1).                       

(4.9)  

Напряжения на конденсаторах находим, поделив величины зарядов 
(4.9) на емкость конденсаторов:  

ଵܷ =
௎బ
ଶ
(1 + ,(ݐݏ݋ܿ ଶܷ =

௎బ
ଶ
ݐݏ݋ܿ) − 1).                       (4.10)  

 
 

Задача 4.3 ( 4. 132 ) 

 

Найти период и коэффициент затухания электрических колебаний 
контура, изображенного на Рис. 4.4. Емкость конденсатора C 
индуктивность L и активное сопротивление R считаются известными. 

 

            Рис. 4.4  

Решение 

Данный контур является параллельным LCR – контуром, активное 
сопротивление которого шунтирует конденсатор, и ток через него 
соответствует току утечки конденсатора. Установим положительное 
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направление обхода контура по часовой стрелке. Запишем два 
уравнения закона Кирхгофа для контура, проходящего через 
индуктивность и конденсатор  

ܮ− ௗூಽ
ௗ௧
= ௤

஼
,                                     (4.11) 

и конура, проходящего через активное сопротивление и конденсатор 

ோܴܫ +
௤
஼
= 0.                                        (4.12) 

Здесь IL обозначает ток через индуктивность, а IR ток через активное 
сопротивление. Для выбранных направлений обхода положительный 
ток через индуктивность и сопротивление направлен на Рис. 4.4 вверх. 
Поэтому закон сохранения электрического заряда в этих обозначениях 
записывается, как  

௅ܫ + ோܫ = ஼ܫ =
ௗ௤
ௗ௧
.                         (4.13) 

Разрешим полученную систему уравнений (4.11)-(4.13) через ток в 
конденсаторе IC. Для этого продифференцируем уравнение (4.11) по 
времени один раз, а уравнение (4.12) два раза и воспользуемся 
уравнением (4.13). В результате получим дифференциальное уравнение 
для тока через конденсатор 

஼̈ܫ +
ଵ
ோ஼
஼̇ܫ +

ଵ
௅஼
஼ܫ = 0.            (4.14) 

Решение этого линейного однородного уравнения с постоянными 
коэффициентами ищется в виде IС = Aexp(it). Подстановка IС в этом 
виде в уравнения (4.13) приводит к квадратному уравнению для 
частоты колебаний 

ଶ − ௜
ோ஼

 − ଵ
௅஼
= 0.            (4.15) 

Его решения дают значения собственных частот электрических 
колебаний в контуре 

 = ௜
ଶோ஼

−±ට ଵ
(௅஼)మ

− ଵ
ସோ஼

= 0.            (4.16) 

Мнимая часть комплексной частоты дает коэффициент затухания 
колебаний  

	 = 	 ଵ
ଶோ஼

,                     (4.17) 

вещественная часть определяет период затухающих колебаний  
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ܶ = ଶ

ට భ
(ಽ಴)మି

భ
రೃ಴

.            (4.18) 

 
 

Задача 4.4  

 

В схеме, изображенной на Рис. 4.5, c известными значениями емкости 
конденсатора С, индуктивности L катушки, активного сопротивления R 
и ЭДС батареи  в момент времени t = 0 замыкают ключ. Как будет 
после этого меняться заряд конденсатора q(t)? 

 

            Рис. 4.5  

Решение 

В начальный момент времени конденсатор не заряжен и ток в цепи не 
течет. После замыкания ключа в контуре, составленном из 
последовательно соединенных конденсатора, катушки индуктивности и 
активного сопротивления, начинаются электрические колебания. 
Запишем уравнения закона Кирхгофа для этого замкнутого LCR-
контура 

 = ܮ ௗூ
ௗ௧
+ ܴܫ + ௤

஼
.                                      (4.19) 

С учетом соотношения I = dq/dt это уравнение записывается в виде 
дифференциального уравнения колебаний заряда конденсатора 

ݍ̈ + ோ
௅
ݍ̇ + ଵ

௅஼
ݍ = 

௅
.            (4.20) 

Решение этого уравнения ищем в виде суммы частного решения q = С 
и общего решения соответствующего однородного уравнения 
затухающих колебаний последовательного LCR-контура 

ݍ = С + ݐ)ݏ݋௧ܿି݁ܣ + ),  = ோ
ଶ௅
, = ට ଵ

௅஼
− ோమ

ସ௅మ
.                       (4.21) 



 28

где константы A и  находятся из начальных условий q0 = 0 и  I = dq/dt 
= 0, что и приводит к финальному ответу в задаче:  

ݍ = С ቂ1 − ݁ି௧ ቀܿݏ݋ݐ + 

ቁቃݐ݊݅ݏ ,  = ோ

ଶ௅
, = ට ଵ

௅஼
− ோమ

ସ௅మ
.                       

(4.22) 

 
 
 

Задача 4.4 ( 4. 142 ) 

 

Цепь, состоящая из последовательно соединенных конденсатора 
емкости С и катушки с индуктивностью L и активным сопротивлением 
R, подключена к сети переменного напряжения с амплитудой U0 и 
частотой  (см. Рис. 4.6). Найти: 

a) амплитуду тока в цепи в режиме установившихся электрических 
колебаний, 

b) разность фаз между током и внешним напряжением, 
c) потребляемую мощность в зависимости от частоты внешнего 

напряжения, 
d) ширину резонанса мощности для случая высокой добротности 

резонансного контура Q >>1, 
e) амплитуды напряжения на конденсаторе и катушке в резонансе. 

 

 

            Рис. 4.6  

Решение 

В данной задаче речь идет об установившихся вынужденных 
колебаниях в последовательном LCR-контуре при приложенном 
внешнем переменном напряжении U(t) = U0cost. Эту задачу удобнее 
решать в комплексных числах. Для этого добавим к вещественному 
выражению для U(t) еще и мнимую часть: 
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(ݐ)ܷ = ଴ܷ cosݐ + ݅ ଴ܷ sinݐ = ଴ܷ݁௜௧ .                   (4.23) 

В режиме установившихся колебаний ток в цепи имеет ту же 
временную зависимость, что и приложенное напряжение I(t)  exp(it). 
При этом падение напряжения на всех элементах цепи равно 
произведению силы тока и импеданса данного элемента цепи 

ܷ = ,ܫܼ ܼோ = ܴ, ܼ௅ = ݅ܮ, ܼோ =
ଵ
௜஼
.        (4.24) 

Здесь приведены значения импеданса катушки ZL конденсатора ZC и 
активного сопротивления ZR. Внешнее напряжение U(t) равно сумме 
падений напряжения всех последовательно соединенных элементов 
цепи 

ܷோ + ௅ܷ + ஼ܷ = (ܼ + ܼ௅ + ܼ஼)ܫ = ଴ܷ݁௜௧ .      (4.25) 

Это уравнение и определяет ток в цепи 

ܫ = ௎బ௘೔೟

ோା௜ቀ௅ି భ
಴ቁ
.                                                   (4.26) 

Вещественная часть этого комплексного выражения дает реальное 
значение силы тока  

ܫ = ௎బ

ටோమାቀ௅ି భ
಴ቁ

మ cos(ݐ + ),         (4.27) 

где множитель перед функцией косинуса есть амплитуда колебаний 
тока, а разность фаз колебаний тока и внешнего напряжения равна  

 = tanିଵ
భ
಴ି௅

ோ
.                                    (4.28) 

Энергия внешнего источника выделяется в контуре на активном 
сопротивлении в виде тепловых потерь. Интерес представляет их 
мощность, усредненная по периоду колебаний  

〈ܲ()〉 = 〈ଶܫ〉ܴ = ோ௎బమ

ଶ൬ோమାቀ௅ି భ
಴ቁ

మ
൰
.         (4.29) 

Максимального значения потребляемая мощность <P> достигает в 
резонансе при  

 = ଴ =
ଵ
√௅஼

.                                 (4.30) 

Добротность резонансного контура определяется отношением 
собственной частоты контура к коэффициенту затухания 
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ܳ = 
ଶ
,                       (4.31) 

где значения  и  для последовательного LCR-контура определяются 
формулой (4.21), полученной при решении предыдущей задачи. Из 
формул (4.21) и (4.31) видно, что добротность у последовательного 
LCR-контура велика, если сопротивление катушки мало R2 << L/C. В 
этом случае собственная частота контура   0 и Q  0L/R. 
Зависимость <P()> в этом случае имеет резкий и узкий максимум в 
области резонанса   0. Получим приближенное выражение для 
<P()> в этой области, считая что | - 0| << 0 и сопротивление 
катушки мало R2 << L/C. Тогда выражение (4.29) переходит в  

〈ܲ()〉 = ோ௎బమ

଼௅మ൬(ିబ)మାቀ
ೃ
మಽቁ

మ
൰
.         (4.32) 

Ширина резонансного максимума  определяется на половине его 
высоты <P(0  /2)> = <P(0)>/2. Нетрудно видеть, что  

 = ோ
௅
= 2.                       (4.33) 

Поэтому у добротности контура наряду с определением (4.31), 
связанным с динамикой собственных затухающих колебаний, есть и 
другое определение, связанное с формой резонансного максимума 
<P()>  при вынужденных колебаниях:  

ܳ = 

.                       (4.34) 

Чем выше добротность, тем уже резонансный максимум, т.е. тем 
меньше ширина резонанса  по сравнению с его частотой 0. 

Напряжение на катушке и конденсаторе легко находиться по 
известному значению силы тока (4.26) и значениям импеданса этих 
элементов цепи (4.24):  

௅ܷ = ܼ௅ܫ =
௜௅௎బ௘೔೟

ோା௜ቀ௅ି భ
಴ቁ

, ஼ܷ = ܼ஼ܫ =
௎బ௘೔೟

௜஼ோା(ଵିమ௅஼)
       (4.35) 

Модуль этих комплексных выражений дает амплитуду колебаний 
напряжения. В резонансе при  = 0 амплитуды колебаний обоих 
напряжений равны и превышают амплитуду внешнего напряжения в Q 
раз: 

| ௅ܷ| = | ஼ܷ| =
௅௎బ
ோ

= ܳ ଴ܷ.                                  (4.36) 
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Из формулы (4.35) видно, что разность фаз колебаний напряжения на 
конденсаторе и катушке равна , т.е. напряжения UL и UС имеют разный 
знак. В резонансе же UL+UС = 0 и |UR| = U0 << |UС,L|. 

 
 

Задача 4.6 ( 4. 139 ) 

 

На Рис. 4.7 показана простейшая схема сглаживающего фильтра. На 
вход подают напряжение U(t) = U0(1+cost). Найдите выходное 
напряжение U'(t). При каком значении RC амплитуда переменной 
составляющей выходного напряжения будет в  раз меньше постоянной 
составляющей? 

 

 

            Рис. 4.7  

 

 
 

Решение 

В силу линейности связи тока и напряжения U = ZI для обоих 
элементов схемы мы можем разделить входной сигнал U(t) на две 
составляющие, постоянную и переменную, и найти отклик U’ на 
каждую из них независимо. Для переменной составляющей удобнее 
решать задачу в комплексных числах. Для этого добавим к 
вещественному выражению для U(t) еще и мнимую часть: U(t) = 
U0exp(it). Ток в цепи найдем из закона Ома 

(ܼோ + ܼ஼)ܫ = 	 ቀܴ +
ଵ
௜஼
ቁ ܫ = ଴ܷ݁௜௧ .                          (4.37) 

Далее найдем выходное напряжение, как падение напряжения на 
конденсаторе 
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ܷ′ = ܼ஼ܫ =
௎బ௘೔೟

௜ோ஼ାଵ
	.                          (4.38) 

Для получения вещественного значения напряжения оставим в 
выражении (4.38) только его вещественную часть 

ܷ′ = ௎బ ୡ୭ୱ(௧ା)
ඥଵା(ோ஼)మ

,  = −tanିଵܴܥ	(4.39)                          . 

Для получения выходного напряжения при постоянном входном 
сигнале прейдем в выражении (4.38) к пределу  = 0. В этом случае 
формула (4.38) дает U’ = U0. Складывая обе составляющие выходного 
напряжения, получим в итоге 

ܷ′ = ଴ܷ ൬1 +
ୡ୭ୱ(௧ା)
ඥଵା(ோ஼)మ

൰	.                          (4.40) 

Амплитуда колебаний переменной части выходного напряжения 
оказалась меньше чем во входном сигнале в  

 = ඥ1 + (ܴܥ)ଶ                          (4.41) 

число раз. Отсюда окончательно находим, что  

ܥܴ = ඥమିଵ


                          (4.42) 

 
 

 
 

ЗАНЯТИЕ 5 
 
 

Тема занятия: Электромагнитные волны. Напряженности 
электрического и магнитного полей, объемная плотность энергии и 
плотность потока энергии (вектор Пойнтинга) в электромагнитной 
волне. 

 
В предлагаемых задачах рассматриваются следующие вопросы: 

 
5.1-  свободные электромагнитные колебания в вакууме, плоская 
бегущая волна; 
5.2-  плоская стоячая волна; 
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5.3-  вынужденные электромагнитные колебания возбуждаемые в 
ограниченных по объему системах, размер которых много меньше 
длины электромагнитной волны. 
5.4-  электромагнитные волны в волноводе; фазовая и групповая 
скорость. 
 

 

Задача 5.1 (4.224 ) 
 

Найти средний вектор Пойнтинга S  у плоской электромагнитной 
волны с электрической составляющей E E kr 0 cos( ) t , если волна 
распространяется в вакууме. 

 

Решение 
 

Как известно плоские электромагнитные волны в вакууме 
являются поперечными kE  0 . Направим координатную ось x вдоль 
волнового вектора электромагнитной волны k, а ось y вдоль вектора  
напряженности электрического поля E: 

 
 E E t kx E Ey x z   0 0 0cos( ) , , . 

 
Найдем вектор индукции магнитного B поля с помощью одного из 
уравнений Максвелла 
 

rot
c t

E B
 

1 


. 

 
Согласно определению оператора ротора в выбранной нами системе 
координат имеется только одна отличная от нуля компонента rotE , 
направленная вдоль оси z 
 

 rot
E
x

E
yz

y xE  






. 

Поэтому 




B
t

ckE t kxz   0 sin( ) . 

 
Учитывая, что   ck , получим из последнего равенства 
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B E t kxz  0 cos( ) , 
 

или  записывая в векторном виде 
 

 B kE
1
k

. 

 
Полученное уравнение показывает, что вектор напряженности 
магнитного поля перпендикулярен как вектору k так и вектору E, 
причем B E .  

Согласно определению вектора Пойнтинга  S EH
c

4
 найдем, 

что 
 

 

S k
 

c
k

E t kx
4 0

2 2


cos ( ) . 

 
Здесь мы учли, что в вакууме H B .  Поскольку в среднем по времени 
cos ( ) /2 1 2 t kx  , то мы получаем в итоге, что 

 

S k


c
k

E
8 0

2


 

 
Полезно сравнить выражение для вектора Пойнтинга S с объемной 

плотностью энергии в электромагнитной волне 
 

 w E t kx   E B2 2
0
2

2

8 8 4  
cos ( ) . 

 
Данное выражение показывает, что объемная плотность энергии 

периодически меняется в пространстве и во времени, перемещаясь со 
скоростью света в направлении волнового вектора. Действительно, 
сравнивая это выражение с вектором Пойнтинга, легко видеть, что в 
плоской бегущей электромагнитной волне 

 

S k
 c

k
w .  

 
 

Задача 5.2 (4.230-231) 
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В вакууме в направлении оси х установилась стоячая 
электромагнитная волна, электрическая составляющая которой 

 
 

E E 0 cos( )cos( ) t kx . 
 

Найти магнитную составляющую волны B( , )x t . Изобразить 
примерную картину распределения электрической и магнитной 
составляющей волны (E и B) в моменты t  0 и t T / 4  где T  2 /  
- период колебаний. Найти вектор Пойнтинга и его среднее за период 
колебаний значение. 
 

Решение 
 
 

Выберем координатные оси так же как и при решении предыдущей 
задачи (ось x вдоль волнового вектора электромагнитной волны k, а ось 
y вдоль вектора  напряженности электрического поля E). Пользуясь тем 
же уравнением Максвелла получим дифференциальное уравнение для 
определения B( , )x t  

 

  



B
t

ckE t kxz  0 cos( ) sin( ) , 

 
откуда, учитывая, что   ck , получим 
 

B E t kxz  0 sin( ) sin( ) . 
 

Индукция магнитного поля в стоячей электромагнитной волне так же 
оказывается перпендикулярна напряженности электрического поля, 
однако, теперь колебания электрической и магнитной составляющих 
происходят со сдвигом во времени. В нулевой момент времени t  0 
индукция магнитного поля равна нулю, а амплитуда колебаний 
электрической компоненты максимальна.  Координатная зависимость 
напряженности электрического поля в этот момент времени 
представлена на Рис. 4.1 сплошной линией. В момент времени t T / 4  
наоборот, напряженность электрического поля равна нулю, а амплитуда 
колебаний магнитной компоненты максимальна. На Рис. 5.1 
зависимость B от x при t T / 4  изображена пунктирной линией. 
Отметим, что пучности колебаний электрической компоненты смещены 
относительно пучностей магнитной компоненты на четверть длины 
волны  / /4 2 k . Таким образом, энергия стоячей электромагнитной 
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волны w  ( ) /E B2 2 8  периодически переходит из электрической 
формы в магнитную совершая при этом небольшие перемещения в 
пределах   / 4 .   Среднее же по времени значение объемной плотности 
энергии w  постоянно в пространстве и равно w E 0

2 8/  . 
Соответственно вектор Пойнтинга должен совершать периодические 
колебания в направлении оси х. Действительно, подставляя значения 
напряженности электрического и магнитного поля в выражение для 
вектора Пойнтинга, получим, что 
 

 S k


c
k

E t kx
16

2 20
2


sin( ) sin( ) , 

 
а среднее значение S  0. 

 
 

Рис. 5.1 
 
 

Задача 5.3 (4.232) 
 

Плоский воздушный конденсатора, обкладки которого имеют 
форму дисков радиуса R  6см, подключен к переменному 
синусоидальному напряжению частоты  1000с-1. Найти отношение 
амплитудных значений магнитной и электрической энергии внутри 
конденсатора. Считать, что толщина зазора между обкладками 
конденсатора много меньше чем R . 

0 1 2

0

 E(x, t=0)
 B(x, t=T/4)

-E0

E0

x/



 37

 

Решение 
 

В силу того, что размеры конденсатора много меньше длины 
волны свободных электромагнитных колебаний с частотой 
   , /  2 2 108c  см, электрическое поле в конденсаторе будет 
слабо отличаться от однородного поля возникающего в статическом 
случае, т.е. E U d / , где U - приложенное напряжение, а d - ширина 
зазора между пластинами. Мы так же можем пренебречь искажением 
электрического поля на краях конденсатора, поскольку d R . По 
условию задачи  U U t 0 sin( ) , поэтому мы можем записать 
напряженность электрического поля в виде 

 
E E 0 sin( ) t , 

 
где вектор E0  направлен вдоль оси конденсатора, а его величина 
определяется амплитудой колебаний приложенного напряжения 
E U d0 0 / . 

Согласно уравнению Максвелла 
 

B l E sd
c

I
c t

d  
4 1 


 

 
переменное электрическое поле вызывает в конденсаторе вихревое 
магнитное поле, силовые линии которого представляют собой 
концентрические окружности. Отметим, что внутри конденсатора I  0
. Если выбрать в качестве контура интегрирования окружность радиуса 
r с центром на оси конденсатора, то из данного уравнения следует, что 

2 1 2 



rB
c

r
t

E  

Найдем с помощью этого уравнения зависимость индукции магнитного 
поля от расстояния от оси конденсатора 
 

B r
c

E t



2 0 cos( ) . 

 
Легко видеть, что возникающее магнитное поле намного слабее 
электрического. Действительно, отношение их амплитудных значений 
B E r c R c R0 0 2 2 1/ / / /      . 
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Энергии электрического и магнитного поля, W e  и W m , найдем, 
интегрируя их объемные плотности w Ee 

2 8/   и w Bm  2 8/   по 
объему конденсатора 

 
 
 

W dR E t

W dR E c t

e

m





2
0
2 2

2 4
0
2 2 2

8

64

/ sin ( )

/ cos ( )



 
 

 
Таким образом, отношение их амплитудных значений оказывается 
очень малой величиной  2 2 2 158 5 10R c/    . Отметим здесь для 
сравнения, что для свободных электромагнитных волн в вакууме это 
отношение равно единице (см. задачи (4.1) и (4.2)). 
 

Задача 5.4 
 

Найти электрическую и магнитную составляющие собственных 
электромагнитных колебаний в металлическом волноводе, поперечное 
сечение которого представляет собой квадрат со стороной a . 
Определить групповую и фазовую скорость распространения 
электромагнитных волн вдоль оси волновода. 

 

Решение 
 
В этой задаче необходимо найти такое электромагнитное поле, 

которое бы удовлетворяла волновому уравнению внутри волновода 
 

 2
2

2

2

1E E
c t




 

 
а также определенным граничным условиям на его поверхности. Будем 
считать, что электромагнитное поле практически не проникает внутрь 
металла. Тогда граничными условиями будут равенства нулю 
нормальной компоненты магнитного поля B и тангенциальной 
компоненты электрического поля E на поверхности стенок волновода. 

Направим координатную ось x вдоль оси волновода а оси y и z 
вдоль его стенок. Общим решением волнового уравнения является, как 
известно, произвольная суперпозиция плоских волн. Рассмотрим для 
начала волну двигающуюся в плоскости xy под произвольным углом   
к оси волновода. Она схематически изображена на Рис. 5.2 под цифрой 
1. Пусть эта волна поляризована таким образом, что вектор 
напряженности электрического поля направлен вдоль оси z. Тогда 
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напряженность электрического поля имеет следующий вид  
E E1 0  cos( ) t k x k yx y , где E0  - произвольный амплитудный 
вектор, направленный вдоль оси z, величины k kx y,   положительны. 
Знак минус перед k y  связан с тем, что волна 1 движется в 
отрицательном направлении оси y. Частота колебаний связана с 
волновым вектором дисперсионным соотношением   c k kx y

2 2 . 

 
Рис. 5.2 

 
Однако при отражении от стенки волновода y  0  возникнет 

вторая, отраженная, волна E E2 0   cos( ) t k x k yx y . У отраженной 
волны изменился знак компоненты волнового вектора 
перпендикулярной к стенки волновода k y , а также знак вектора 
амплитуды колебаний E0 . Последнее следует из граничных условий. 
Действительно, при этом напряженность суммарного электрического 
поля  

 
E E E E    1 2 02 sin( ) sin( ) t k x k yx y  

 
оказывается равна нулю на нижней стенке волновода y  0 . Можно 
убедиться в том, что при этом автоматически выполняется и другое 
граничное условие, обращается в нуль нормальная к стенке волновода 
компонента магнитного поля. Для выполнения этих граничных условий 
на противоположной стенке волновода y a  следует потребовать 
чтобы 

z x

y

2

1

E
B

A


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k a n ny   , , , ,0 1 2   

 
Таким образом, в направлении оси y возникает как в резонаторе стоячая 
волна. Данное условие равносильно требованию того, чтобы в 
резонаторе укладывалось целое число (n) полуволн. В результате 
напряженность электрического поля представляет собой произведение 
бегущей волны в направлении оси волновода и стоячей волны в 
поперечном направлении 
 

E E  2 0 sin( )sin( / ) t k x ny ax , 
 

а частота собственных колебаний оказывается равной 
 

   c k n ax
2 2/ . 

 
Отметим, что напряженность электрического поля оказалась 

перпендикулярна оси волновода, в то время как индукция магнитного 
поля имеет и продольную составляющую. Индукцию магнитного поля 
проще всего искать как суперпозицию магнитных полей волн 1 и 2: 

 
B B B E t k x k y E t k x k y

E t k x ny a
B B B E t k x k y E t k x k y

E t k x ny a

y x y x y

x

x x y x y

x

y y

x x

         


         

 

1 2 0 0

0

1 2 0 0

0

2

2

cos cos( ) cos cos( )

cos sin( ) sin( / )
sin cos( ) sin cos( )

sin cos( ) cos( / ) ,

   

  
   

  
 

 
где   - угол между осью волновода и направлением распространения 
волн 1 и 2,  cos / /  k k n ax x

2 2 . Данный тип колебаний 
называется ТЕ волны. Имеется еще один тип решений, ТМ волны, в 
которых магнитное поле поперечно, а электрическое поле имеет 
продольную компоненту.  Решение, соответствующее ТМ волнам, 
находится аналогичным образом.  

Фазовую и групповую скорости движения электромагнитных волн 
вдоль оси волновода найдем как 

 

 

 

v
k

c
k n a

k

v d
dk

c
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x
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x
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 

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
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



2 2

2 2

/

/
.
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Отметим, что фазовая скорость оказывается больше скорости 

света. Однако, это не противоречит теории относительности, поскольку 
фазовая скорость есть скорость перемещения геометрической точки 
пересечения стенки волновода и поверхности волнового фронта (точка 
А на Рис.4.2), а не реального физического объекта.  Действительно, 
скорость этой точки c / cos  совпадает с фазовой скоростью. Скорость 
же распространения электромагнитных колебаний вдоль оси волновода 
определяется групповой скоростью, которая меньше скорости света. 
Отметим, что её значение равно проекции скорости волн 1 и 2 на ось 
волновода v cã  cos . 

 
 

Задачи, рекомендуемые по этой теме для домашнего задания: 
4.192/4.221, /4.228, 4.202/4.233, 4.203/4.234, 4.206/2.37, 4.209/4.240. 

 
 

ЗАНЯТИЕ 6 
 
 
Тема занятия: дипольное излучение электромагнитных волн. 
 
В предлагаемых задачах рассматриваются следующие вопросы: 
 
6.1 радиационное торможение электрона совершающего финитное 

движение в поле силового центра. 
6.2 угловое распределение дипольного излучения. 
6.3 сечение Релеевского рассеяния света на электроне. 
6.4 связь между плотностью потока энергии и импульса 

электромагнитного излучения.  
 

Задача 6.1 (4.249) 
 

Найти среднюю мощность излучения электрона совершающего 
гармонические колебания с амплитудой A  10 8 см и частотой 
  2 1016 с-1. 

 

Решение 
 
Мощность излучения в дипольном приближении определяется 

выражением 
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P e a
c

 2
3

2 2

3 , 

 
где a A t    2 cos( )  - ускорение электрона, совершающего 
гармонические колебания. Принимая во внимание ,что 
cos ( ) /2 1 2 t   , найдем, что средняя мощность излучения равна 

 

P e A
c


2 4 2

33
 . 

 
Подставляя численные значения, приведенные в условии задачи, 
получим P  0 05. эрг/с. 

Интересно проследить зависимость мощности излучения от 
времени. Дело в том, что вследствие потерь энергии на излучение 
колебания фактически являются затухающими.  Однако, из-за слабости 
сил лучистого трения, время затухания оказывается большим по 
сравнению с периодом колебаний. Поэтому мы можем пользоваться 
полученным выше выражением для средней за период мощности 
излучения, понимая теперь под A A t ( )  плавную зависимость 
амплитуды затухающих колебаний от времени. Таким образом, мы 
можем записать, что скорость  уменьшения энергии колебаний равна 

 
dE
dt

P e
c m

E   
2
3

2 2

3

 . 

 
В последнем равенстве мы воспользовались тем, что энергия 
гармонических колебаний равна 
 

E m A  2 2

2
. 

 
Решением данного дифференциального уравнения является 
экспоненциальная зависимость энергии колебаний от времени 
 

E E e t 
0

/ , 
 

где E0  - начальная энергия колебаний, а   3 23 2 2c m e/  - время 
затухания колебаний. Фактически величина   определяет время 
излучения электрона. Действительно, поскольку A E 1/2 , то 
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A t A t( ) exp( / ) 0 2   и следовательно мощность излучения также 
убывает по экспоненциальному закону 
 

P t P t( ) exp( / ) 0  . 
 

Если в качестве   использовать характерное значение частоты 
обращения электрона в атоме, приведенное в условии задачи, то мы 
получим хорошую оценку времени излучения атома    4 10 10 с.  

 
 

Задача 6.2 (4.223/) 
 

Плоская монохроматическая волна с частотой   падает на упруго 
связанный электрон. Собственная частота колебаний электрона равна 
 0

. Найти отношение энергии электромагнитного излучения 
рассеиваемой электроном в единицу времени к плотности потока 
энергии в падающей волне. 

 

Решение 
 
Найдем закон движения электрона r( )t  в осцилляторе под  

действием электрического поля падающей волны E E 0 cos( ) t . 
Запишем уравнение движения 

 
࢘̈ = −଴ଶ࢘ −	

௘ࡱబ
௠
cos(ݐ).  

 
Его решение, соответствующее установившимся вынужденным 
колебаниям, имеет вид 
 

 r E



e t
m

0
2

0
2

cos( )
 

  

 
Зная ускорение электрона,࢘̈, можно найти энергию, излучаемую 
электроном в единицу времени 

ܲ =
2݁ଶ࢘̈ଶ

3ܿଷ
=	

2݁ସସ

݉(ଶ − ଴
ଶ)ଶ  	(ݐ)ࡱ
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Отношение этой энергии к плотности потока энергии в падающей волне 
S c E2 4/  имеет размерность площади и является фактически 
сечением   рассеяния электромагнитной волны на электроне 
 

 
 


 

 


P
S

r0
2

4

2
0
2 2

8
3

, 

 
где r e mc0

2 2 102 82 10   / . см - классический радиус электрона. 
Для длинноволновых электромагнитных колебаний    0  

сечение рассеяния оказывается пропорционально  4  (закон Релея). Это 
объясняет голубую окраску неба. Действительно, коротковолновая 
часть солнечного излучения, т.е. голубой и синий свет, сильно 
рассеивается в атмосфере Земли, в то время как красный и желтый свет 
рассеивается слабее и попадает на поверхность Земли в виде прямых 
солнечных лучей. 

В обратном случае   0  собственной частотой колебаний 
электрона можно пренебречь, и мы получаем сечение рассеяния света 
свободным электроном   8 30

2r / . 
 
 

Задача 6.3 (4.255) 
 

Средняя мощность, излучаемая элементарным диполем, равна P. 
Найти среднюю объемную плотность энергии электромагнитного поля 
в вакууме в волновой зоне на луче, перпендикулярном оси диполя, на 
расстоянии r  от него. 

 

Решение 
 
Плотность потока электромагнитной энергии излучаемой диполем 

S  связана с объемной плотностью энергии w  простым соотношением 
S cw . Это соотношение было получено в задаче 4.1 для плоской 
электромагнитной волны. Однако оно справедливо и для сферической 
расходящейся волны в волновой зоне ( r   ), поскольку в каждой 
точке этой волны волновой фронт можно считать плоским. Угловая 
зависимость w определяется угловой зависимостью напряженности 
электрического поля дипольного излучения E  sin( ) , где   - угол 
между направлением излучения и направлением колебаний диполя. 
Поскольку w E 2  мы можем записать, что 
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w w 0
2sin ( ) , 

 
 

где w0  - объемной плотностью энергии на луче, перпендикулярном оси 
диполя. Мощность дипольного излучения можно найти интегрируя 
плотность потока энергии S через сферическую поверхность радиуса r 
 

P Sds cw r d   0
2 2sin ( )  , 

 
Вычислив интеграл sin ( ) /2 8 3 d  , найдем искомую связь между 
P  и w0   
 

w P r0
23 8 /  . 

 
 

Задача 6.4 (4.258) 
 

Считая, что частица имеет форму шарика и поглощает весь, 
падающий на неё свет, найти радиус частицы, при котором 
гравитационное притяжение её к Солнцу будет компенсироваться силой 
светового давления. Мощность светового излучения Солнца P  4 1026

Вт, плотность частицы   1 г/см3. 
 

Решение 
 
Энергия и импульс фотона связаны между собой через скорость 

света   cp . Важно, что это соотношение справедливо для всех 
фотонов, независимо от их энергий. Поэтому это соотношение 
применимо и для плотностей потока энергии и импульса всего 
излучения Солнца в целом. Выразим, пользуясь этим соотношением, 
силу светового давления на частицу через поглощаемую частицей в 
единицу времени энергию излучения.  

 

F
c

d
c

r S 
1 1 2S s  , 

 
где S - плотность потока энергии, r - радиус частицы, интегрирование 
проводится по поверхности частицы, обращенной к солнцу. Полная 
мощность излучения Солнца равна P R S 4 2 , где R  - расстояние 
частицы от Солнца. Поэтому 
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F
c R

 1
4

2

2

Pr . 

 
Приравняв силу светового давления силе гравитационного притяжения 
к солнцу 
 

F mM
R

 
2

, 

 
где m r 4 33  /  - масса частицы, M  2 1033 г - масса Солнца, 
   6 67 10 8. см3/(г с2) гравитационная постоянная, получим условие 
для радиуса частицы, при котором гравитационное притяжение её к 
Солнцу будет скомпенсировано силой светового давления 
 

r P
c M

 
3

16
0 6

  
.  мкм. 

 
 

Задачи, рекомендуемые по этой теме для домашнего задания: 
4.11/4.248, 4.213/4.250, 4.216/4.252, 4.217/4.253, 4.220/4.256, 4.221/4.257. 
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