Детальная информация
Название | Quantum anharmonic oscillator |
---|---|
Авторы | Turbiner Alexander V.; del Valle Rosales Juan Carlos. |
Выходные сведения | Singapore: World Scientific Publishing Company, 2023 |
Коллекция | Электронные книги зарубежных издательств; Общая коллекция |
Тематика | Perturbation (Quantum dynamics); Harmonic oscillators.; World Scientific Publishing eBooks Collection |
Тип документа | Другой |
Тип файла | Другой |
Язык | Английский |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Ключ записи | 00013252 |
Дата создания записи | 03.04.2023 |
"Quartic anharmonic oscillator with potential V(x)= x^2 + g^2x^4 was the first non-exactly-solvable problem tackled by the newly-written Schrödinger equation in 1926. Since that time thousands of articles have been published on the subject, mostly about the domain of small g^2 (weak coupling regime), although physics corresponds to g² ~ 1, and they were mostly about energies. This book is focused on studying eigenfunctions as a primary object for any g^2. Perturbation theory in g^2 for the logarithm of the wavefunction is matched to the true semiclassical expansion in powers of h: it leads to locally-highly-accurate, uniform approximation valid for any g2E[0,∞) for eigenfunctions and even more accurate results for eigenvalues. This method of matching can be easily extended to the general anharmonic oscillator as well as to the radial oscillators. Quartic, sextic and cubic (for radial case) oscillators are considered in detail as well as quartic double-well potential"--.
Количество обращений: 0
За последние 30 дней: 0