Детальная информация

Название Deep learning for 3D vision: algorithms and applications
Авторы Li Xiao-Li; Yang Xulei.; Su Hao.
Выходные сведения Singapore: World Scientific, c2024
Коллекция Электронные книги зарубежных издательств; Общая коллекция
Тематика Deep learning (Machine learning); Computer vision.; Three-dimensional imaging — Data processing.; World Scientific Publishing eBooks Collection
Тип документа Другой
Тип файла Другой
Язык Английский
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи 00013683
Дата создания записи 14.03.2024

Разрешенные действия

Посмотреть

"3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications. This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing. This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning"--.

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика