Детальная информация
Название | Surrogate modeling for high-frequency design. Recent advances |
---|---|
Другие авторы | Koziel Slawomir ; Pietrenko-Dabrowska Anna |
Выходные сведения | London [etc.]: World Scientific, cop. 2022 |
Коллекция | Электронные книги зарубежных издательств ; Общая коллекция |
Тематика | Электронные приборы сверхвысокочастотные ; Микроэлектронные схемы интегральные сверхвысокочастотные ; Математическое моделирование ; World Scientific Publishing eBooks Collection |
УДК | 621.385.6 ; 621.3.049.77.029.6 ; 519.876.5 |
Тип документа | Другой |
Тип файла | Другой |
Язык | Английский |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать) |
Ключ записи | RU\SPSTU\edoc\73810 |
Дата создания записи | 13.09.2024 |
Contemporary high-frequency engineering design heavily relies on full-wave electromagnetic (EM) analysis. This is primarily due to its versatility and ability to account for phenomena that are important from the point of view of system performance. Unfortunately, versatility comes at the price of a high computational cost of accurate evaluation. Consequently, utilization of simulation models in the design processes is challenging although highly desirable. The aforementioned problems can be alleviated by means of surrogate modeling techniques, the most popular of which are data-driven models. Although a large variety of methods are available, they are all affected by the curse of dimensionality. This is especially pronounced in high-frequency electronics, where typical system responses are highly nonlinear. Construction of practically useful surrogates covering wide ranges of parameters and operating conditions is a considerable challenge. Surrogate Modeling for High-Frequency Design presents a selection of works representing recent advancements in surrogate modeling and their applications to high-frequency design. Some chapters provide a review of specific topics such as neural network modeling of microwave components, while others describe recent attempts to improve existing modeling methodologies. Furthermore, the book features numerous applications of surrogate modeling methodologies to design optimization and uncertainty quantification of antenna, microwave, and analog RF circuits.
Количество обращений: 3
За последние 30 дней: 0