Детальная информация
Название | Advances in PGPR research |
---|---|
Другие авторы | Singh H. B., (Dr.,) |
Коллекция | Электронные книги зарубежных издательств ; Общая коллекция |
Тематика | Plant growth-promoting rhizobacteria. ; Plant-microbe relationships. ; Rhizobactéries promotrices de la croissance des plantes. ; Relations plante-micro-organisme. ; Biocides. ; Biofertilizers. ; Biological control. ; Case studies. ; Crop production. ; Crop yield. ; Genomes. ; Genomics. ; Microbial flora. ; Natural enemies. ; Pathogens. ; Pest control. ; Pesticides. ; Phytoremediation. ; Plant disease control. ; Plant growth promoting rhizobacteria. ; Plant pathogens. ; Priming. ; Research. ; Rhizosphere. ; Rhizosphere bacteria. ; Rhizosphere fungi. ; Soil bacteria. ; Soil flora. ; Soil fungi. ; Sustainability. ; EBSCO eBooks |
Тип документа | Другой |
Тип файла | |
Язык | Английский |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Ключ записи | ocn994263350 |
Дата создания записи | 20.07.2017 |
Разрешенные действия
pdf/2416022.pdf | – |
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
|
---|---|---|
epub/2416022.epub | – |
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
|
Группа | Анонимные пользователи |
---|---|
Сеть | Интернет |
This book includes 25 contributions from vastly experienced, global experts in PGPR research in a comprehensive and influential manner, with the most recent facts and extended case studies. Also, the chapters address the current global issues in biopesticide research.
Место доступа | Группа пользователей | Действие |
---|---|---|
Локальная сеть ИБК СПбПУ | Все |
|
Интернет | Авторизованные пользователи СПбПУ |
|
Интернет | Анонимные пользователи |
|
- Advances in PGPR Research
- Copyright
- Contents
- Contributors
- Foreword
- Preface
- 1 Mechanisms of Growth Promotion by Members of the Rhizosphere Fungal Genus Trichoderma
- 1.1 Introduction
- 1.2 Trichoderma Plant Growth Promotion: Direct Mechanisms
- 1.2.1 Nutrient acquisition
- Phosphate solubilization
- Siderophores
- Synthesis of secondary metabolites
- 1.2.1 Nutrient acquisition
- 1.3 Trichoderma Plant Growth Promotion: Indirect Mechanisms
- 1.3.1 Biocontrol of plant disease
- Induced systemic resistance
- Mycoparasitism
- Antibiosis
- Competition
- 1.3.2 Abiotic Stress Tolerance
- 1.3.1 Biocontrol of plant disease
- 1.4 The ‘Omics’ of Trichoderma
- 1.4.1 Trichoderma –plant interaction transcriptomics
- 1.4.2 Proteomics
- 1.5 Conclusion
- Acknowledgments
- References
- 2 Physiological and Molecular Mechanisms of Bacterial Phytostimulation
- 2.1 Introduction
- 2.2 Chemical Recognition between Plants and Bacteria
- 2.2.1 Plant developmental and genetic responses to PGPR
- 2.2.2 Plant molecular responses to PGPR
- 2.3 Bacterial Signals Regulate Root Morphogenesis
- 2.3.1 N-acyl-L-homoserine lactones
- 2.3.2 Cyclodipeptides
- 2.3.3 Volatile compounds
- 2.3.4 Virulence factors
- 2.4 Molecular Responses of Bacteria to Root Exudates
- 2.4.1 Exudate-induced changes in PGPR gene expression
- 2.4.2 Exudates modulate the protein profile
- 2.5 Conclusion
- References
- 3 Real-time PCR as a Tool towards Understanding Microbial Community Dynamics in Rhizosphere
- 3.1 Introduction
- 3.2 Extraction of Metagenomic Nucleic Acid from Environment
- 3.2.1 Cell lysis
- 3.2.2 Purification of nucleic acid
- 3.2.3 Extraction of RNA from soil
- 3.3 Real-time PCR
- 3.3.1 q-PCR: Setting up the reaction
- 3.3.2 Primer designing
- 3.3.3 Optimizing real-time PCR conditions
- 3.3.4 Standards for quantification, calibration curve generation and normalization
- 3.4 Microbial Gene Abundance and Expression Studies in Rhizosphere Biology
- 3.4.1 16S rRNA as a molecular chronometer for total bacteria
- 3.4.2 Quantification of specific microbial taxa
- 3.4.3 Functional genes as markers
- 3.5 Conclusion
- Acknowledgement
- References
- 4 Biosafety Evaluation: A Necessary Process Ensuring the Equitable Beneficial Effects of PGPR
- 4.1 Biosafety of PGPR in Soil
- 4.1.1 Risk groups and biosafety levels
- 4.1.2 Ecological interactions
- Soil indigenous populations
- Soil essential populations: the beneficial organisms
- 4.1.3 Hidden dangers in the use of PGPR
- 4.1.4 Economic impact of inattentive application
- 4.2 Mechanisms Involved
- 4.2.1 Antigenic substances
- 4.2.2 Biological control agents
- 4.2.3 Competence
- 4.2.4 Virulence
- 4.2.5 Alteration of plant-associated mechanisms
- 4.3 Determining the Biosafety of PGPR
- 4.3.1 In vitro bioassays
- 4.3.2 Environmental and human safety (EHSI) index as a new biosafety tool
- 4.4 Conclusions and Future Prospects of Biosafety Screening
- References
- 4.1 Biosafety of PGPR in Soil
- 5 Role of Plant Growth-Promoting Microorganisms in Sustainable Agriculture and Environmental Remediation
- 5.1 Introduction: Plant Growth- Promoting Rhizobacteria (PGPR)
- 5.2 Role of Plant Growth-Promoting Bacteria (PGPR) and Fungi (PGPF) in Sustainable Agriculture
- 5.2.1 Fixation, solubilization and mineralization of nutrients
- Biological nitrogen fixation
- Phosphate solubilization
- Potassium solubilization
- Fe sequestration
- 5.2.2 Phytostimulation by production of hormones
- 5.2.3 Enhanced resistance against abiotic stresses
- 5.2.4 Role of PGPR and PGPF in disease control
- Antagonism against phytopathogenic microbes
- PGPR-mediated breakdown of pathogen communication
- PGPR-mediated ISR and change in root exudation
- Non-pathogen: production of lipopeptides as ISR agents
- Plant-driven recruitment of PGPR for defence
- 5.2.5 Enhancing the nutritional quality and yield of agricultural produce
- 5.2.6 Beneficial microbiome management and recruitment in the rhizosphere
- 5.2.1 Fixation, solubilization and mineralization of nutrients
- 5.3 Importance of PGPR and PGPF in Phyto/Bioremediation
- 5.3.1 Heavy metals
- 5.3.2 Organic contaminants
- 5.4 Role of PGPR and PGPF in Biomass and Biofuel Production
- 5.5 Role of PGPR and PGPF in Wasteland and Degraded Land Reclamation
- 5.6 Role of Plant Growth-Promoting Microorganisms in Carbon Sequestration under Warming Climate
- 5.7 Strategies for Enhancing the Performance of Plant Growth-Promoting Microorganisms
- 5.7.1 Agronomic practices
- 5.7.2 Rhizospheric engineering
- 5.7.3 Molecular approach
- 5.8 Challenges and Future Research Perspectives
- Acknowledgements
- References
- 6 Pseudomonas Communities in Soil Agroecosystems
- 6.1 Introduction
- 6.2 Tillage Managements and Sustainable Agriculture Systems
- 6.3 Application of Agrochemicals
- 6.4 Crop Species
- 6.5 Suppressive Soils and Pseudomonas : a Close Relationship
- 6.6 Perspectives and Future Directions
- References
- 7 Management of Soilborne Plant Pathogens with Beneficial Root-Colonizing Pseudomonas
- 7.1 Introduction
- 7.2 Rhizosphere Pseudomonads and Natural Suppression of Soilborne Plant Pathogens
- 7.2.1 Take-all decline
- 7.2.2 Rhizoctonia -suppressive soils
- 7.2.3 Soils suppressive to Thielaviopsis basicola and Fusarium oxysporum
- 7.3 The emerging Role of Rhizodeposits in the Establishment and Performance of Pseudomonas Spp. in Suppressive Soils
- 7.4 Biocontrol Pseudomonas spp. as a Model for Climate-Driven Selection of Beneficial Microbiome
- 7.5 Conclusion
- References
- 8 Rhizosphere, Mycorrhizosphere and Hyphosphere as Unique Niches for Soil-Inhabiting Bacteria and Micromycetes
- 8.1 Introduction
- 8.2 Historical Aspects of Rhizosphere, Mycorhizospere and Hyphosphere Study and Modern Research Approaches
- 8.2.1 The terms: brief background
- 8.2.2 Research approaches: some recent advances and classical techniques
- 8.3 Rhizosphere, the Niche Influenced by Plant Roots
- 8.3.1 Bacteria in rhizosphere
- 8.3.2 Micromycetes in rhizosphere
- 8.4 Mycorrhizosphere, the Niche Influenced both by Roots and Associated Mycobionts
- 8.4.1 Bacteria in mycorrhizosphere
- 8.4.2 Micromycetes in mycorrhizosphere
- 8.5 Hyphosphere, the Niche Influenced By Fungi
- 8.5.1 Bacteria in hyphosphere
- 8.5.2 Micromycetes in hyphosphere
- 8.6 Conclusion
- 8.7 Future Trends and Perspectives
- Acknowledgements
- References
- 9 The Rhizospheres of Arid and Semi-arid Ecosystems are a Source of Microorganisms with Growth-Promoting Potential
- 9.1 Introduction
- 9.2 Extremophile Microorganisms
- 9.2.1 Thermophiles
- 9.2.2 Psychrophiles
- 9.2.3 Halophiles
- 9.2.4 Alkaliphiles
- 9.2.5 Acidophiles
- 9.3 Concluding Remarks
- References
- 10 Rhizosphere Colonization by Plant-Beneficial Pseudomonas spp.: Thriving in a Heterogeneous and Challenging Environment
- 10.1 Introduction
- 10.2 The Rhizosphere: a Heterogeneous Environment Shaped by Plant Rhizodeposition
- 10.2.1 Root exudation
- Composition
- Mechanisms
- Localization
- 10.2.2 Senescence of root outer cells
- 10.2.3 Contributions of the rhizodeposition mechanisms
- 10.2.1 Root exudation
- 10.3 Beneficial Pseudomonas spp. Colonization of the Rhizosphere and Their Influence on the Plant Physiology
- 10.3.1 Rhizosphere colonization
- 10.3.2 Pseudomonas spp. toolbox to impact the plant
- Disruption of plant hormone signalling
- Alteration of root exudation
- Type III secretion system
- 10.4 Competitiveness-Enhancing Traits Involved in Pseudomonas spp. Rhizosphere Colonization
- 10.4.1 Root exudates utilization
- 10.4.2 Siderophore production and uptake
- 10.4.3 Nitrogen dissimilation
- 10.4.4 Phase variation
- 10.4.5 Phenazine production
- 10.5 Conclusions and Future Prospects
- References
- 11 Endophytomicrobiont: A Multifaceted Beneficial Interaction
- 11.1 Introduction
- 11.2 Endophytic Classification
- 11.3 Recognition of Endophytic Status In Planta
- 11.4 Plant Colonization by Endophytic Bacteria: the Complete Process
- 11.4.1 Chemotaxis
- 11.4.2 Biofilm formation: the basis of endophytism
- 11.4.3 Tissue invasion for endophytic entry
- 11.4.4 Plant defence genes involved in endophytic colonization
- 11.4.5 Entry and localization within plant tissues
- 11.5 Multifaceted Benefits of Endophytic Bacteria
- 11.5.1 Plant growth promotion
- 11.5.2 Remediators of oxidative stress
- 11.5.3 Bioremediation
- 11.5.4 Antibiotic production
- 11.6 Endophytes as Parasites
- 11.7 Conclusion and Future Prospects
- Acknowledgements
- References
- 12 Contribution of Plant Growth-Promoting Bacteria to the Maize Yield
- 12.1 Introduction
- 12.2 Bacteria and Maize
- 12.2.1 Endophytic bacteria
- 12.2.2 Rhizospheric bacteria
- 12.2.3 Plant growth-promoting bacteria
- 12.3 Bacterial Mechanism of Plant Growth Promotion
- 12.3.1 Biological nitrogen fixation
- 12.3.2 Phosphate solubilization
- 12.3.3 Siderophore production
- 12.3.4 Indole acetic acid production
- 12.3.5 ACC-deaminase
- 12.4 Maize Yield Improved by Bacteria in Field Trial
- 12.4.1 Azospirillum
- Study 1 (Fulchieri and Frioni, 1994)
- Study 2 (Swędrzyńska and Sawicka, 2000)
- Study 3 (Hungria et al., 2010)
- Study 4 (Ferreira et al., 2013)
- Study 5 (Morais et al., 2016)
- Study 6 (Müller et al., 2016)
- Study 7 (Fukami et al., 2016)
- 12.4.2 Pseudomonas
- Study 1 (Shaharoona et al., 2006)
- Study 2 (Hameeda et al., 2008)
- Study 3 (Viruel et al., 2014)
- 12.4.3 Azotobacter
- Study 1 (Hussain et al., 1987)
- Study 2 (Pandey et al., 1998)
- Study 3 (Hajnal-Jafari et al., 2012)
- 12.4.4 Serratia
- (Hameeda et al., 2008)
- 12.4.5 Rhanella
- (Montañez and Sicardi, 2013)
- 12.4.6 Herbaspirillum
- (Alves et al., 2015)
- 12.4.1 Azospirillum
- 12.5 Conclusion
- Reference
- 13 The Potential of Mycorrhiza Helper Bacteria as PGPR
- 13.1 Introduction
- 13.2 Early Findings
- 13.3 Proposed Helper Mechanisms
- 13.3.1 Promoted germination of fungal propagules
- 13.3.2 Promoted mycelial growth
- 13.3.3 Modification of the mycorrhizosphere soil
- 13.3.4 Host recognition and modifications in root system architecture
- 13.3.5 Receptivity of the roots
- 13.4 Genomic Approaches
- 13.5 Potential use of MHB as PGPR
- 13.6 Future Challenges in MHB Research
- References
- 14 Methods for Evaluating Plant Growth-Promoting Rhizobacteria Traits
- 14.1 Introduction
- 14.1.1 Plant growth-promoting rhizobacteria
- 14.1.2 Types of PGPR
- 14.1.3 Mechanisms of action
- 14.1.4 The need for PGPR utilization in agricultural practice
- 14.2 Determination of PGPR Properties
- 14.2.1 Nitrogen fixation
- Growth in solid N-free media
- Growth in semisolid N-free media
- Acetylene (C 2 H 2)-dependent ethylene (C 2 H 4) production (acetylene reduction activity (ARA) assay
- PCR amplification of nif genes
- 14.2.2 Phosphate solubilization
- Qualitative assay
- Quantitative assay
- 14.2.3 Siderophores production
- Qualitative assay
- Quantitative assay
- 14.2.4 Indole acetic acid production
- Quantitative assay of intrinsic IAA and IAA-related compounds
- Quantitative determination of potential IAA and IAA-related compounds
- 14.2.5 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity
- Qualitative assay
- Quantitative assay
- 14.2.6 PGPR as biocontrol agent
- Antagonism
- Antibiosis
- Hydrogen cyanide production
- Exo-polysaccharides production
- Lytic enzyme production
- 14.2.1 Nitrogen fixation
- 14.3 Conclusion
- Acknowledgements
- References
- 14.1 Introduction
- 15 The Rhizosphere Microbial Community and Methods of its Analysis
- 15.1 Introduction
- 15.2 Rhizospheric Microbial Communities
- 15.3 Methods for Microbial Community Analysis
- 15.3.1 Culture-dependent methods
- Dilution plating and culturing methods
- Community-level physiological profiles
- 15.3.2 Culture-independent techniques
- Fatty acid methyl ester analysis (FAME)
- Phospholipid fatty acids (PLFAs)
- Fluorescent in situ hybridization (FISH)
- Flow cytometry (FCM)
- Automated ribosomal intergenic spacer analysis (ARISA)
- 16S rRNA amplicon pyrosequencing
- Denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE)
- Restriction fragment length polymorphism (RFLP)/amplified ribosomal DNA restriction analysis (ARDRA)
- Terminal restriction fragment length polymorphism (T-RFLP)
- Single-strand conformation polymorphism (SSCP)
- Amplicon length-heterogeneity PCR (LH-PCR)
- Random amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) technique
- DNA-Microarray
- Metagenomic approaches
- 15.3.1 Culture-dependent methods
- 15.4 Conclusions and Future Perspectives
- References
- 16 Improving Crop Performance under Heat Stress using Thermotolerant Agriculturally Important Microorganisms
- 16.1 Introduction
- 16.2 What is Heat Stress?
- 16.3 Effects of High Temperature on Plants
- 16.3.1 Seed germination and emergence
- 16.3.2 Growth and morphology
- 16.3.3 Physiological effects
- 16.3.4 Photosynthesis
- 16.3.5 Water relations
- 16.3.6 Dry matter partitioning
- 16.3.7 Reproductive development
- 16.3.8 Yield
- 16.4 Heat Stress Tolerance in Plants
- 16.5 Role of Microorganisms to Improve Crop Performance under Stress
- 16.5.1 Adaptation of microorganisms as a response to abiotic stress
- 16.5.2 PGPR-mediated alleviation of abiotic stress
- 16.6 Conclusion
- Acknowledgement
- References
- 17 Phytoremediation and the Key Role of PGPR
- 17.1 Phytoremediation
- 17.1.1 Phytoremediation mechanisms
- 17.1.2 Focus on bioavailability
- 17.2 Significance of PGPR for an Effective Phytoremediation
- 17.3 PGPR Effect on Metals Phytoextraction
- 17.4 Rhizoremediation of Organic Contaminants
- References
- 17.1 Phytoremediation
- 18 Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Degradation of Xenobiotic Compounds and Allelochemicals
- 18.1 Xenobiotic Compounds and Allelochemicals – Major Inhibitors of Plant Growth and Productivity
- 18.1.1 Xenobiotic compounds as priority environmental pollutants
- 18.1.2 Effects of xenobiotic compounds on plant growth and productivity
- 18.1.3 Approaches for decontamination of niches contaminated with xenobiotic compounds
- 18.1.4 Biological approaches for degradation of xenobiotic compounds
- 18.1.5 Plant associated microorganisms for degradation of xenobiotic compounds
- 18.1.6 Allelochemicals as potential inhibitors of normal plant growth
- 18.1.7 Structural and functional diversity of allelochemicals and their mode of actions
- 18.1.8 Role of allelochemicals in ecological success of invasive plants and weeds
- 18.1.9 Invasive plants with allelopathy potential
- 18.1.10 Environmental fate of allelochemicals – natural factors and microbial metabolism
- 18.2 Microbial Degradation of Xenobiotic Compounds and Allelochemicals
- 18.2.1 Microbial degradation of xenobiotic compounds
- 18.2.2 Degradation of xenobiotic compounds by plant-associated microorganism (endophytes and PGPRs)
- 18.2.3 Degradation of xenobiotic compounds by rhizospheric bacteria and PGPR
- 18.2.4 Degradation of xenobiotic compounds via rhizosphere engineering
- 18.2.5 Genetically modified rhizospheric bacteria/PGPR for degradation of xenobiotic compounds
- 18.2.6 Microbial degradation of allelochemicals
- 18.2.7 Degradation of allelochemicals by rhizospheric bacteria/PGPR
- 18.3 Conclusion and Future Perspective
- References
- 18.1 Xenobiotic Compounds and Allelochemicals – Major Inhibitors of Plant Growth and Productivity
- 19 Harnessing Bio-priming for Integrated Resource Management under Changing Climate
- 19.1 Introduction
- 19.2 Bio-priming
- 19.3 Advantages of Bio-priming with Reference to Stress Moderation
- 19.4 Mechanisms Used by Microorganisms for Improved Plant Nutrition
- 19.5 Effect of Bio-priming in Different Crop Species
- 19.6 Proteomic Analysis Induced by Bio-Priming
- 19.7 Conclusion
- Acknowledgement
- References
- 20 Unravelling the Dual Applications of Trichoderma spp. as Biopesticide and Biofertilizer
- 20.1 Introduction
- 20.2 Commercial Biocontrol Agents
- 20.3 Trichoderma Biodiversity
- 20.4 Trichoderma spp. Identification
- 20.5 Trichoderma spp. as Biopesticide
- 20.5.1 Mycoparasitism
- 20.5.2 Antibiosis
- 20.5.3 Competition
- 20.6 Trichoderma spp. as Biofertilizers
- 20.7 Commercial Formulations of Trichoderma spp.
- 20.8 Conclusion and Future Prospects
- Acknowledgments
- References
- 21 Genome Insights into Plant Growth-Promoting Rhizobacteria, an Important Component of Rhizosphere Microbiome
- 21.1 Introduction
- 21.2 Bacterial Rhizobiome
- 21.3 Mechanisms of PGPR
- 21.4 NGS Technologies and Genome Assembly
- 21.5 Genome-based Taxonomy and Phylogenomics
- 21.6 Genome Mining of Plant Beneficial Genes in PGPR
- 21.7 Comparative Genomic Analyses
- 21.8 Conclusion and Future Prospects
- References
- 22 Plant Growth-Promoting Rhizobacteria (PGPR): Mechanism, Role in Crop Improvement and Sustainable Agriculture
- 22.1 Introduction
- 22.2 History
- 22.3 Plant Growth-Promoting Rhizobacteria (PGPR)
- 22.4 Role of PGPR in soil
- 22.5 PGPR and their Interaction with Plants
- 22.6 Mechanism of PGPR
- 22.6.1 Direct antagonism
- Hyperparasitism
- Nitrogen fixation
- Phosphate solubilization
- Potassium solubilization
- Phytohormone production
- 22.6.2 Indirect mechanisms
- Antibiosis
- Siderophore production
- Burkholderia phytofirmans
- Role of Burkholderia phytofirmans as PGPR
- Microbe–microbe signalling in the rhizosphere
- 22.6.1 Direct antagonism
- 22.7 Future Prospective
- 22.8 Conclusion
- Acknowledgements
- References
- 23 PGPR: A Good Step to Control Several of Plant Pathogens
- 23.1 Introduction
- 23.2 Biocontrol of Plant Virus
- 23.3 Biocontrol of Plant Bacteria
- 23.4 Biocontrol of Plant Fungi
- 23.5 Biocontrol of Plant Nematode
- 23.6 Biocontrol of Plant Parasite
- 23.7 Biocontrol of Phytoplasma
- 23.8 Conclusion
- References
- 24 Role of Trichoderma Secondary Metabolites in Plant Growth Promotion and Biological Control
- 24.1 Introduction
- 24.2 Trichoderma : An Overview
- 24.3 Secondary Metabolites
- 24.4 Secondary Metabolites of Trichoderma
- 24.5 Adequacy of Secondary Metabolites Inferred from Trichoderma
- 24.6 Conclusion
- Acknowledgment
- References
- 25 PGPR-Mediated Defence Responses in Plants under Biotic and Abiotic Stresses
- 25.1 Introduction
- 25.2 PGPR in Abiotic Stress Management
- 25.3 PGPR in Biotic Stress Management
- 25.4 Conclusion
- References
- Index