Детальная информация
Название | Mastering machine learning on AWS: advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow |
---|---|
Авторы | Mengle Saket S. R., |
Другие авторы | Gurmendez Maximo |
Коллекция | Электронные книги зарубежных издательств ; Общая коллекция |
Тематика | Machine learning. ; Python (Computer program language) ; Data mining. ; COMPUTERS / General. ; EBSCO eBooks |
Тип документа | Другой |
Тип файла | |
Язык | Английский |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Ключ записи | on1102472595 |
Дата создания записи | 25.05.2019 |
Разрешенные действия
pdf/2142587.pdf | – |
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
|
---|---|---|
epub/2142587.epub | – |
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
|
Группа | Анонимные пользователи |
---|---|
Сеть | Интернет |
This book will help you master your skills in various artificial intelligence and machine learning services available on AWS. Through practical hands-on examples, you'll learn how to use these services to generate impressive results. You will have a tremendous understanding of how to use a wide range of AWS services in your own organization.
Место доступа | Группа пользователей | Действие |
---|---|---|
Локальная сеть ИБК СПбПУ | Все |
|
Интернет | Авторизованные пользователи СПбПУ |
|
Интернет | Анонимные пользователи |
|
- Cover
- Title Page
- Copyright and Credits
- Dedication
- About Packt
- Contributors
- Table of Contents
- Preface
- Section 1: Machine Learning on AWS
- Chapter 1: Getting Started with Machine Learning for AWS
- How AWS empowers data scientists
- Using AWS tools for machine learning
- Identifying candidate problems that can be solved using machine learning
- Machine learning project life cycle
- Data gathering
- Evaluation metrics
- Algorithm selection
- Deploying models
- Summary
- Exercise
- How AWS empowers data scientists
- Section 2: Implementing Machine Learning Algorithms at Scale on AWS
- Chapter 2: Classifying Twitter Feeds with Naive Bayes
- Classification algorithms
- Feature types
- Nominal features
- Ordinal features
- Continuous features
- Feature types
- Naive Bayes classifier
- Bayes' theorem
- Posterior
- Likelihood
- Prior probability
- Evidence
- How the Naive Bayes algorithm works
- Bayes' theorem
- Classifying text with language models
- Collecting the tweets
- Preparing the data
- Building a Naive Bayes model through SageMaker notebooks
- Naïve Bayes model on SageMaker notebooks using Apache Spark
- Using SageMaker's BlazingText built-in ML service
- Naive Bayes – pros and cons
- Summary
- Exercises
- Classification algorithms
- Chapter 3: Predicting House Value with Regression Algorithms
- Predicting the price of houses
- Understanding linear regression
- Linear least squares estimation
- Maximum likelihood estimation
- Gradient descent
- Evaluating regression models
- Mean absolute error
- Mean squared error
- Root mean squared error
- R-squared
- Implementing linear regression through scikit-learn
- Implementing linear regression through Apache Spark
- Implementing linear regression through SageMaker's linear Learner
- Understanding logistic regression
- Logistic regression in Spark
- Pros and cons of linear models
- Summary
- Chapter 4: Predicting User Behavior with Tree-Based Methods
- Understanding decision trees
- Recursive splitting
- Types of decision trees
- Cost functions
- Gini Impurity
- Information gain
- Criteria to stop splitting trees
- Recursive splitting
- Understanding random forest algorithms
- Understanding gradient boosting algorithms
- Predicting clicks on log streams
- Introduction to Elastic MapReduce (EMR)
- Training with Apache Spark on EMR
- Getting the data
- Preparing the data
- Categorical encoding
- One-hot encoding
- Training a model
- Evaluating our model
- Area Under ROC Curve
- Area under the precision-recall curve
- Training tree ensembles on EMR
- Training gradient-boosted trees with the SageMaker services
- Preparing the data
- Training with SageMaker XGBoost
- Applying and evaluating the model
- Preparing the data
- Summary
- Exercises
- Understanding decision trees
- Chapter 5: Customer Segmentation Using Clustering Algorithms
- Understanding How Clustering Algorithms Work
- k-means clustering
- Euclidean distance
- Manhattan distance
- Hierarchical clustering
- Agglomerative clustering
- Divisive clustering
- k-means clustering
- Clustering with Apache Spark on EMR
- Clustering with Spark and SageMaker on EMR
- Understanding the purpose of the IAM role
- Summary
- Exercises
- Understanding How Clustering Algorithms Work
- Chapter 6: Analyzing Visitor Patterns to Make Recommendations
- Making theme park attraction recommendations through Flickr data
- Collaborative filtering
- Memory-based approach
- Model-based approach
- Matrix factorization
- Stochastic gradient descent
- Alternating Least Squares
- Finding recommendations through Apache Spark's ALS
- Data gathering and exploration
- Training the model
- Getting recommendations
- Recommending attractions through SageMaker Factorization Machines
- Preparing the dataset for learning
- Training the model
- Getting recommendations
- Summary
- Exercises
- Section 3: Deep Learning
- Chapter 7: Implementing Deep Learning Algorithms
- Understanding deep learning
- Applications of deep learning
- Self-driving cars
- Learning to play video games using a deep learning algorithm
- Understanding deep learning algorithms
- Neural network algorithms
- Activation function
- Backpropagation
- Introduction to deep neural networks
- Neural network algorithms
- Understanding convolutional neural networks
- Summary
- Exercises
- Chapter 8: Implementing Deep Learning with TensorFlow on AWS
- About TensorFlow
- TensorFlow as a general machine learning library
- Training and serving the TensorFlow model through SageMaker
- Creating a custom neural net with TensorFlow
- Summary
- Exercises
- Chapter 9: Image Classification and Detection with SageMaker
- Introducing Amazon SageMaker for image classification
- Training a deep learning model using Amazon SageMaker
- Classifying images using Amazon SageMaker
- Summary
- Exercises
- Section 4: Integrating Ready-Made AWS Machine Learning Services
- Chapter 10: Working with AWS Comprehend
- Introducing Amazon Comprehend
- Accessing AmazonComprehend
- Named-entity recognition using Comprehend
- Sentiment analysis using Comprehend
- Text classification using Comprehend
- Summary
- Exercise
- Chapter 11: Using AWS Rekognition
- Introducing Amazon Rekognition
- Implementing object and scene detection
- Implementing facial analysis
- Other Rekognition services
- Image moderation
- Celebrity recognition
- Face comparison
- Other Rekognition services
- Summary
- Exercise
- Chapter 12: Building Conversational Interfaces Using AWS Lex
- Introducing Amazon Lex
- Building a custom chatbot using Amazon Lex
- Summary
- Exercises
- Section 5: Optimizing and Deploying Models through AWS
- Chapter 13: Creating Clusters on AWS
- Choosing your instance types
- On-demand versus spot instance pricing
- Reserved pricing
- Amazon Machine Images (AMIs)
- Deep learning hardware
- Distributed deep learning
- Model versus data parallelization
- Distributed TensorFlow
- Distributed learning through Apache Spark
- Data parallelization
- Model parallelization
- Distributed hyperparameter tuning
- Distributed predictions at scale
- Parallelization in SageMaker
- Summary
- Choosing your instance types
- Chapter 14: Optimizing Models in Spark and SageMaker
- The importance of model optimization
- Automatic hyperparameter tuning
- Hyperparameter tuning in Apache Spark
- Hyperparameter tuning in SageMaker
- Summary
- Exercises
- Chapter 15: Tuning Clusters for Machine Learning
- Introduction to the EMR architecture
- Apache Hadoop
- Apache Spark
- Apache Hive
- Presto
- Apache HBase
- Yet Another Resource Negotiator
- Tuning EMR for different applications
- Configuring application properties
- Maximize Resource Allocation
- The AWS Glue Catalog
- Configuring application properties
- Managing data pipelines with Glue
- Creating tables with Glue
- Accessing Glue tables in Spark
- Summary
- Introduction to the EMR architecture
- Chapter 16: Deploying Models Built in AWS
- SageMaker model deployment
- Apache Spark model deployment
- Summary
- Exercises
- Appendix: Getting Started with AWS
- Other Books You May Enjoy
- Index