Детальная информация

Название The data visualization workshop: a self-paced, practical approach to transforming your complex data into compelling, captivating graphics. — Third edition.
Авторы Döbler Mario. ; Großmann Tim.
Коллекция Электронные книги зарубежных издательств ; Общая коллекция
Тематика Information visualization — Computer programs. ; Python (Computer program language) ; EBSCO eBooks
Тип документа Другой
Тип файла PDF
Язык Английский
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи on1181993746
Дата создания записи 06.08.2020

Разрешенные действия

pdf/2548565.pdf
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
epub/2548565.epub
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа Анонимные пользователи
Сеть Интернет
Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи
  • Cover
  • FM
  • Copyright
  • Table of Contents
  • Preface
  • Chapter 1: The Importance of Data Visualization and Data Exploration
    • Introduction
      • Introduction to Data Visualization
      • The Importance of Data Visualization
      • Data Wrangling
      • Tools and Libraries for Visualization
    • Overview of Statistics
      • Measures of Central Tendency
      • Measures of Dispersion
      • Correlation
      • Types of Data
      • Summary Statistics
    • NumPy
      • Exercise 1.01: Loading a Sample Dataset and Calculating the Mean Using NumPy
      • Activity 1.01: Using NumPy to Compute the Mean, Median, Variance, and Standard Deviation of a Dataset
      • Basic NumPy Operations
        • Indexing
        • Slicing
        • Splitting
        • Iterating
      • Exercise 1.02: Indexing, Slicing, Splitting, and Iterating
      • Advanced NumPy Operations
        • Filtering
        • Sorting
        • Combining
        • Reshaping
      • Exercise 1.03: Filtering, Sorting, Combining, and Reshaping
    • pandas
      • Advantages of pandas over NumPy
      • Disadvantages of pandas
      • Exercise 1.04 Loading a Sample Dataset and Calculating the Mean using Pandas
      • Exercise 1.05: Using pandas to Compute the Mean, Median, and Variance of a Dataset
      • Basic Operations of pandas
        • Indexing
        • Slicing
        • Iterating
        • Series
      • Exercise 1.06: Indexing, Slicing, and Iterating Using pandas
      • Advanced pandas Operations
        • Filtering
        • Sorting
        • Reshaping
      • Exercise 1.07: Filtering, Sorting, and Reshaping
      • Activity 1.02: Forest Fire Size and Temperature Analysis
    • Summary
  • Chapter 2: All You Need to Know about Plots
    • Introduction
    • Comparison Plots
      • Line Chart
        • Uses
        • Example
        • Design Practices
      • Bar Chart
        • Use
        • Don’ts of Bar Charts
        • Examples
        • Design Practices
      • Radar Chart
        • Uses
        • Examples
        • Design Practices
      • Activity 2.01: Employee Skill Comparison
    • Relation Plots
      • Scatter Plot
        • Uses
        • Examples
        • Design Practices
        • Variants: Scatter Plots with Marginal Histograms
        • Examples
      • Bubble Plot
        • Use
        • Example
        • Design Practices
      • Correlogram
        • Examples
        • Design Practices
      • Heatmap
        • Use
        • Examples
        • Design Practice
      • Activity 2.02: Road Accidents Occurring over Two Decades
    • Composition Plots
      • Pie Chart
        • Use
        • Examples
        • Design Practices
        • Variants: Donut Chart
        • Design Practice
      • Stacked Bar Chart
        • Use
        • Examples
        • Design Practices
      • Stacked Area Chart
        • Use
        • Examples
        • Design Practice
      • Activity 2.03: Smartphone Sales Units
      • Venn Diagram
        • Use
        • Example
        • Design Practice
    • Distribution Plots
      • Histogram
        • Use
        • Example
        • Design Practice
      • Density Plot
        • Use
        • Example
        • Design Practice
      • Box Plot
        • Use
        • Examples
      • Violin Plot
        • Use
        • Examples
        • Design Practice
      • Activity 2.04: Frequency of Trains during Different Time Intervals
    • Geoplots
      • Dot Map
        • Use
        • Example
        • Design Practices
      • Choropleth Map
        • Use
        • Example
        • Design Practices
      • Connection Map
        • Use
        • Examples
        • Design Practices
    • What Makes a Good Visualization?
      • Common Design Practices
      • Activity 2.05: Analyzing Visualizations
      • Activity 2.06: Choosing a Suitable Visualization
    • Summary
  • Chapter 3: A Deep Dive into Matplotlib
    • Introduction
    • Overview of Plots in Matplotlib
    • Pyplot Basics
      • Creating Figures
      • Closing Figures
      • Format Strings
      • Plotting
      • Plotting Using pandas DataFrames
      • Ticks
      • Displaying Figures
      • Saving Figures
      • Exercise 3.01: Creating a Simple Visualization
    • Basic Text and Legend Functions
      • Labels
      • Titles
      • Text
      • Annotations
      • Legends
      • Activity 3.01: Visualizing Stock Trends by Using a Line Plot
    • Basic Plots
      • Bar Chart
      • Activity 3.02: Creating a Bar Plot for Movie Comparison
      • Pie Chart
      • Exercise 3.02: Creating a Pie Chart for Water Usage
      • Stacked Bar Chart
      • Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance
      • Stacked Area Chart
      • Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart
      • Histogram
      • Box Plot
      • Activity 3.05: Using a Histogram and a Box Plot to Visualize Intelligence Quotient
      • Scatter Plot
      • Exercise 3.03: Using a Scatter Plot to Visualize Correlation between Various Animals
      • Bubble Plot
    • Layouts
      • Subplots
      • Tight Layout
      • Radar Charts
      • Exercise 3.04: Working on Radar Charts
      • GridSpec
      • Activity 3.06: Creating a Scatter Plot with Marginal Histograms
    • Images
      • Basic Image Operations
      • Activity 3.07: Plotting Multiple Images in a Grid
    • Writing Mathematical Expressions
    • Summary
  • Chapter 4: Simplifying Visualizations Using Seaborn
    • Introduction
      • Advantages of Seaborn
    • Controlling Figure Aesthetics
      • Seaborn Figure Styles
      • Removing Axes Spines
      • Controlling the Scale of Plot Elements
      • Exercise 4.01: Comparing IQ Scores for Different Test Groups by Using a Box Plot
    • Color Palettes
      • Categorical Color Palettes
      • Sequential Color Palettes
      • Diverging Color Palettes
      • Exercise 4.02: Surface Temperature Analysis
      • Activity 4.01: Using Heatmaps to Find Patterns in Flight Passengers' Data
    • Advanced Plots in Seaborn
      • Bar Plots
      • Activity 4.02: Movie Comparison Revisited
      • Kernel Density Estimation
      • Plotting Bivariate Distributions
      • Visualizing Pairwise Relationships
      • Violin Plots
      • Activity 4.03: Comparing IQ Scores for Different Test Groups by Using a Violin Plot
    • Multi-Plots in Seaborn
      • FacetGrid
      • Activity 4.04: Visualizing the Top 30 Music YouTube Channels Using Seaborn's FacetGrid
    • Regression Plots
      • Activity 4.05: Linear Regression for Animal Attribute Relations
    • Squarify
      • Exercise 4.03: Water Usage Revisited
      • Activity 4.06: Visualizing the Impact of Education on Annual Salary and Weekly Working Hours
    • Summary
  • Chapter 5: Plotting Geospatial Data
    • Introduction
      • The Design Principles of geoplotlib
    • Geospatial Visualizations
      • Voronoi Tessellation
      • Delaunay Triangulation
      • Choropleth Plot
      • Exercise 5.01: Plotting Poaching Density Using Dot Density and Histograms
      • Activity 5.01: Plotting Geospatial Data on a Map
      • The GeoJSON Format
      • Exercise 5.02: Creating a Choropleth Plot with GeoJSON Data
    • Tile Providers
      • Exercise 5.03: Visually Comparing Different Tile Providers
    • Custom Layers
      • Exercise 5.04: Plotting the Movement of an Aircraft with a Custom Layer
      • Activity 5.02: Visualizing City Density by the First Letter Using an Interactive Custom Layer
    • Summary
  • Chapter 6: Making Things Interactive with Bokeh
    • Introduction
      • Concepts of Bokeh
      • Interfaces in Bokeh
      • Output
      • Bokeh Server
      • Presentation
      • Integrating
    • Basic Plotting
      • Exercise 6.01: Plotting with Bokeh
      • Exercise 6.02: Comparing the Plotting and Models Interfaces
      • Activity 6.01: Plotting Mean Car Prices of Manufacturers
    • Adding Widgets
      • Exercise 6.03: Building a Simple Plot Using Basic Interactivity Widgets
      • Exercise 6.04: Plotting Stock Price Data in Tabs
      • Activity 6.02: Extending Plots with Widgets
    • Summary
  • Chapter 7: Combining What We Have Learned
    • Introduction
      • Activity 7.01: Implementing Matplotlib and Seaborn on the New York City Database
      • Bokeh
      • Activity 7.02: Visualizing Stock Prices with Bokeh
      • Geoplotlib
      • Activity 7.03: Analyzing Airbnb Data with Geoplotlib
    • Summary
  • Appendix
  • Index
pdf/2548565.pdf

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика

epub/2548565.epub

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика