Детальная информация

Название Applied Computational Thinking with Python: Design Algorithmic Solutions for Complex and Challenging Real-World Problems.
Авторы Jesús Sofía De. ; Martinez Dayrene.
Выходные сведения Birmingham: Packt Publishing, Limited, 2020
Коллекция Электронные книги зарубежных издательств ; Общая коллекция
Тематика Computer algorithms. ; Python (Computer program language) ; Algorithms. ; Algorithmes. ; Python (Langage de programmation) ; Object-oriented programming (OOP). ; Programming & scripting languages: general. ; Computer science. ; Computers — Computer Science. ; Computers — Programming — Object Oriented. ; Computers — Programming Languages — Python. ; EBSCO eBooks
Тип документа Другой
Тип файла PDF
Язык Английский
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи on1225547504
Дата создания записи 05.12.2020

Разрешенные действия

pdf/2695318.pdf
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
epub/2695318.epub
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа Анонимные пользователи
Сеть Интернет

Applied Computational Thinking with Python provides a hands-on approach to implementation and associated methodologies that will have you up-and-running, and productive in no time. Developers working with Python will be able to put their knowledge to work with this practical guide using the computational thinking method for problem-solving.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи
  • Cover
  • Title Page
  • Copyright and Credits
  • Dedicated
  • About Packt
  • Contributors
  • Table of Contents
  • Preface
  • Section 1: Introduction to Computational Thinking
  • Chapter 1: Fundamentals of Computer Science
    • Technical requirements
    • Introduction to computer science
      • Learning about computers and the binary system
    • Understanding theoretical computer science
      • Algorithms
      • Coding theory
      • Computational biology
      • Data structures
      • Information theory
      • Automata theory
      • Formal language theory
      • Symbolic computation
      • Computational geometry
      • Computational number theory
    • Learning about a system's software
      • Operating systems
      • Application software
    • Understanding computing
      • Architecture
      • Programming languages
    • Learning about data types and structures
      • Data types
      • Data structures
    • Summary
  • Chapter 2: Elements of Computational Thinking
    • Technical requirements
    • Understanding computational thinking
      • Problem 1 - Conditions
    • Decomposing problems
    • Recognizing patterns
      • Problem 2 - Mathematical algorithms and generalization
    • Generalizing patterns
    • Designing algorithms
    • Additional problems
      • Problem 2 - Children's soccer party
      • Problem 3 - Savings and interest
    • Summary
  • Chapter 3: Understanding Algorithms and Algorithmic Thinking
    • Technical requirements
    • Defining algorithms in depth
      • Algorithms should be clear and unambiguous
      • Algorithms should have inputs and outputs that are well defined
      • Algorithms should have finiteness
      • Algorithms have to be feasible
      • Algorithms are language-independent
    • Designing algorithms
      • Problem 1 – An office lunch
      • Problem 2 – A catering company
    • Analyzing algorithms
      • Algorithm analysis 1 – States and capitals
      • Algorithm analysis 2 – Terminating or not terminating?
    • Summary
  • Chapter 4: Understanding Logical Reasoning
    • Technical requirements
    • Understanding the importance of logical reasoning
      • Applying inductive reasoning
      • Applying deductive reasoning
    • Using Boolean logic and operators
      • The and operator
      • The or operator
      • The not operator
    • Identifying logic errors
    • Summary
  • Chapter 5: Exploring Problem Analysis
    • Technical requirements
    • Understanding the problem definitions
      • Problem 5A – Building an online store
    • Learning to decompose problems
      • Converting the flowchart into an algorithm
    • Analyzing problems
      • Problem 5B – Analyzing a simple game problem
    • Summary
  • Chapter 6: Designing Solutions and Solution Processes
    • Technical requirements
    • Designing solutions
      • Problem 1 - A marketing survey
    • Diagramming solutions
    • Creating solutions
      • Problem 2 - Pizza order
      • Problem 3 - Delays and Python
    • Summary
  • Chapter 7: Identifying Challenges within Solutions
    • Technical requirements
    • Identifying errors in algorithm design
      • Syntax errors
      • Errors in logic
    • Debugging algorithms
    • Comparing solutions
      • Problem 1 - Printing even numbers
    • Refining and redefining solutions
    • Summary
  • Section 2: Applying Python and Computational Thinking
  • Chapter 8: Introduction to Python
    • Technical requirements
    • Introducing Python
      • Mathematical built-in functions
    • Working with dictionaries and lists
      • Defining and using dictionaries
      • Defining and using lists
    • Using variables and functions
      • Variables in Python
      • Working with functions
    • Learning about files, data, and iteration
      • Handling files in Python
      • Data in Python
      • Using iteration in algorithms
    • Using object-oriented programming
    • Problem 1 - Creating a book library
    • Problem 2 - Organizing information
    • Problem 3 - Loops and math
      • Using inheritance
    • Summary
  • Chapter 9: Understanding Input and Output to Design a Solution Algorithm
    • Technical requirements
    • Defining input and output
    • Understanding input and output in computational thinking
      • Problem 1 – Building a Caesar cipher
      • Problem 2 – Finding maximums
      • Problem 3 – Building a guessing game
    • Summary
  • Chapter 10: Control Flow
    • Technical requirements
    • Defining control flow and its tools
    • Using if, for, and range() and other control flow statements
      • Using nested if statements
      • Using for loops and range
    • Using other loops and conditionals
    • Revisiting functions
    • Summary
  • Chapter 11: Using Computational Thinking and Python in Simple Challenges
    • Technical requirements
    • Defining the problem and Python
      • Decomposing the problem and using Python functionalities
    • Generalizing the problem and planning Python algorithms
    • Designing and testing the algorithm
    • Summary
  • Section 3: Data Processing, Analysis, and Applications Using Computational Thinking and Python
  • Chapter 12: Using Python in Experimental and Data Analysis Problems
    • Technical requirements
    • Defining experimental data
    • Using data libraries in Python
      • Installing libraries
      • Using NumPy and pandas
      • Using Matplotlib
    • Understanding data analysis with Python
    • Using additional libraries for plotting and analysis
      • Using the Seaborn library
      • Using the SciPy library
      • Using the Scikit-Learn library
    • Summary
  • Chapter 13: Using Classification and Clusters
    • Technical requirements
    • Data training and testing
      • Classifying data example
      • Using the Scikit-Learn library
      • Defining optimization models
    • Implementing data clustering
      • Using the BIRCH algorithm
      • Using the K-means clustering algorithm
    • Summary
  • Chapter 14: Using Computational Thinking and Python in Statistical Analysis
    • Technical requirements
    • Defining the problem and Python data selection
      • Defining pandas
      • Determining when to use pandas
    • Preprocessing data
      • Data cleaning
      • Transforming data
      • Reducing data
    • Processing, analyzing, and summarizing data using visualizations
      • Processing data
      • Analyzing and summarizing data
      • Using data visualization
    • Summary
  • Chapter 15: Applied Computational Thinking Problems
    • Technical requirements
    • Problem 1 – Using Python to analyze historical speeches
    • Problem 2 – Using Python to write stories
      • Defining, decomposing, and planning a story
    • Problem 3 – Using Python to calculate text readability
    • Problem 4 – Using Python to find most efficient route
      • Defining the problem (TSP)
      • Recognizing the pattern (TSP)
      • Generalizing (TSP)
      • Designing the algorithm (TSP)
    • Problem 5 – Using Python for cryptography
      • Defining the problem (cryptography)
      • Recognizing the pattern (cryptography)
      • Generalizing (cryptography)
      • Designing the algorithm (cryptography)
    • Problem 6 – Using Python in cybersecurity
    • Problem 7 – Using Python to create a chatbot
    • Summary
  • Chapter 16: Advanced Applied Computational Thinking Problems
    • Technical requirements
    • Problem 1 – Using Python to create tessellations
    • Problem 2 – Using Python in biological data analysis
    • Problem 3 – Using Python to analyze data for specific populations
      • Defining the specific problem to analyze and identify the population
    • Problem 4 – Using Python to create models of housing data
      • Defining the problem
      • Algorithm and visual representations of data
    • Problem 5 – Using Python to create electric field lines
    • Problem 6 – Using Python to analyze genetic data
    • Problem 7 – Using Python to analyze stocks
    • Problem 8 – Using Python to create a convolutional neural network (CNN)
    • Summary
  • Other Books You May Enjoy
  • Index
pdf/2695318.pdf

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика

epub/2695318.epub

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика