Детальная информация

Название TensorFlow 2. 0 Computer Vision Cookbook: Implement Machine Learning Solutions to Overcome Various Computer Vision Challenges.
Авторы Martinez Jesus.
Выходные сведения Birmingham: Packt Publishing, Limited, 2021
Коллекция Электронные книги зарубежных издательств ; Общая коллекция
Тематика COMPUTERS — Computer Vision & Pattern Recognition. ; COMPUTERS — Image Processing. ; COMPUTERS — Machine Theory. ; Computer vision. ; Machine learning. ; Image processing — Digital techniques. ; EBSCO eBooks
Тип документа Другой
Тип файла PDF
Язык Английский
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи on1235592707
Дата создания записи 30.01.2021

Разрешенные действия

pdf/2733885.pdf
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
epub/2733885.epub
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа Анонимные пользователи
Сеть Интернет
Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи
  • Cover
  • Copyright
  • About PACKT
  • Contributors
  • Table of Contents
  • Preface
  • Chapter 1: Getting Started with TensorFlow 2.x for Computer Vision
    • Technical requirements
    • Working with the basic building blocks of the Keras API
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Loading images using the Keras API
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Loading images using the tf.data.Dataset API
      • How to do it…
      • How it works…
      • See also
    • Saving and loading a model
      • How to do it…
      • How it works…
      • There's more…
    • Visualizing a model's architecture
      • Getting ready
      • How to do it…
      • How it works…
    • Creating a basic image classifier
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 2: Performing Image Classification
    • Technical requirements
    • Creating a binary classifier to detect smiles
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Creating a multi-class classifier to play rock paper scissors
      • Getting ready
      • How to do it…
      • How it works…
    • Creating a multi-label classifier to label watches
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Implementing ResNet from scratch
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Classifying images with a pre-trained network using the Keras API
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Classifying images with a pre-trained network using TensorFlow Hub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Using data augmentation to improve performance with the Keras API
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Using data augmentation to improve performance with the tf.data and tf.image APIs
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 3: Harnessing the Power of Pre-Trained Networks with Transfer Learning
    • Technical requirements
    • Implementing a feature extractor using a pre-trained network
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Training a simple classifier on extracted features
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Spot-checking extractors and classifiers
      • Getting ready
      • How to do it…
      • How it works…
    • Using incremental learning to train a classifier
      • Getting ready
      • How to do it…
      • How it works…
    • Fine-tuning a network using the Keras API
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Fine-tuning a network using TFHub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 4: Enhancing and Styling Images with DeepDream, Neural Style Transfer, and Image Super-Resolution
    • Technical requirements
    • Implementing DeepDream
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Generating your own dreamy images
      • Getting ready
      • How to do it…
      • How it works…
    • Implementing Neural Style Transfer
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Applying style transfer to custom images
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Applying style transfer with TFHub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Improving image resolution with deep learning
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 5: Reducing Noise with Autoencoders
    • Technical requirements
    • Creating a simple fully connected autoencoder
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Creating a convolutional autoencoder
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Denoising images with autoencoders
      • Getting ready
      • How to do it…
      • How it works…
    • Spotting outliers using autoencoders
      • Getting ready
      • How to do it…
      • How it works…
    • Creating an inverse image search index with deep learning
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Implementing a variational autoencoder
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 6: Generative Models and Adversarial Attacks
    • Technical requirements
    • Implementing a deep convolutional GAN
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Using a DCGAN for semi-supervised learning
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Translating images with Pix2Pix
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Translating unpaired images with CycleGAN
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Implementing an adversarial attack using the Fast Gradient Signed Method
      • Getting ready
      • How to do it
      • How it works…
      • See also
  • Chapter 7: Captioning Images with CNNs and RNNs
    • Technical requirements
    • Implementing a reusable image caption feature extractor
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Implementing an image captioning network
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Generating captions for your own photos
      • Getting ready
      • How to do it…
      • How it works…
    • Implementing an image captioning network on COCO with attention
      • Getting ready
      • How to do it…
  • Chapter 8: Fine-Grained Understanding of Images through Segmentation
    • Technical requirements
    • Creating a fully convolutional network for image segmentation
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Implementing a U-Net from scratch
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Implementing a U-Net with transfer learning
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Segmenting images using Mask-RCNN and TensorFlow Hub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 9: Localizing Elements in Images with Object Detection
    • Technical requirements
    • Creating an object detector with image pyramids and sliding windows
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Detecting objects with YOLOv3
      • Getting ready
      • How it works…
      • See also
    • Training your own object detector with TensorFlow's Object Detection API
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Detecting objects using TFHub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 10: Applying the Power of Deep Learning to Videos
    • Technical requirements
    • Detecting emotions in real time
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Recognizing actions with TensorFlow Hub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Generating the middle frames of a video with TensorFlow Hub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Performing text-to-video retrieval with TensorFlow Hub
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 11: Streamlining Network Implementation with AutoML
    • Technical requirements
    • Creating a simple image classifier with AutoKeras
      • How to do it…
      • How it works…
      • See also
    • Creating a simple image regressor with AutoKeras
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Exporting and importing a model in AutoKeras
      • How to do it…
      • How it works…
      • See also
    • Controlling architecture generation with AutoKeras' AutoModel
      • How to do it…
      • How it works…
      • See also
    • Predicting age and gender with AutoKeras
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Chapter 12: Boosting Performance
    • Technical requirements
    • Using convolutional neural network ensembles to improve accuracy
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Using test time augmentation to improve accuracy
      • Getting ready
      • How to do it…
      • How it works…
    • Using rank-N accuracy to evaluate performance
      • Getting ready
      • How to do it…
      • How it works…
      • See also
    • Using label smoothing to increase performance
      • Getting ready
      • How to do it…
      • How it works…
    • Checkpointing model
      • How to do it…
    • Customizing the training process using tf.GradientTape
      • How to do it…
      • How it works…
      • Getting ready
      • How to do it…
      • How it works…
      • See also
  • Other Books You May Enjoy
  • Index
pdf/2733885.pdf

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика

epub/2733885.epub

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика