Детальная информация

Название: Gaussian processes for machine learning
Авторы: Rasmussen Carl Edward; Williams Christopher K. I.
Организация: IEEE Xplore (Online Service); MIT Press
Выходные сведения: Cambridge, Massachusetts London, England: MIT Press, 2006
Коллекция: Электронные книги зарубежных издательств; MIT Press eBooks Library; Общая коллекция
Тематика: Гауссовские процессы; машинное обучение
УДК: 519.218.7; 004.6; 004.85
Тип документа: Другой
Тип файла: Другой
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение, печать)
Ключ записи: 6267323

Разрешенные действия: Посмотреть


Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Статистика использования

stat Количество обращений: 8
За последние 30 дней: 4
Подробная статистика