Детальная информация

Название De Gruyter textbook. — Suspension Concentrates: Preparation, Stability and Industrial Applications
Авторы Tadros Tharwat F.
Коллекция Электронные книги зарубежных издательств ; Общая коллекция
Тематика Suspensions (Chemistry) ; SCIENCE — Chemistry — Industrial & Technical. ; TECHNOLOGY & ENGINEERING — Chemical & Biochemical. ; Suspension ; Konzentrat ; (Produktform)Electronic book text ; (Zielgruppe)Fachhochschul-/Hochschulausbildung ; (BISAC Subject Heading)SCI013060 ; (BISAC Subject Heading)TEC021000: TEC021000 TECHNOLOGY / Material Science ; (BISAC Subject Heading)SCI010000: SCI010000 SCIENCE / Biotechnology ; TB: Textbook ; (VLB-WN)9687 ; (Produktrabattgruppe)PN: nicht rabattbeschränkt/Sortimentstitel ; EBSCO eBooks
Тип документа Другой
Тип файла PDF
Язык Английский
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи ocn979883027
Дата создания записи 10.03.2017

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет
Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи
  • Preface
  • Contents
  • 1. General introduction
  • 2. Preparation of suspension concentrates by the bottom-up process
    • 2.1 Introduction
    • 2.2 Preparation of suspensions by precipitation
      • 2.2.1 Nucleation and growth
      • 2.2.2 Precipitation kinetics
      • 2.2.3 Seeded nucleation and growth
      • 2.2.4 Surface modification
      • 2.2.5 Other methods for preparation of suspensions by the bottom-up process
    • 2.3 Characterization of suspension particles
      • 2.3.1 Visual observations
      • 2.3.2 Optical microscopy
      • 2.3.3 Electron microscopy
      • 2.3.4 Confocal laser scanning microscopy (CLSM)
      • 2.3.5 Scanning probe microscopy (SPM)
      • 2.3.6 Scanning tunnelling microscopy (STM)
      • 2.3.7 Atomic force microscopy (AFM)
      • 2.3.8 Scattering techniques
    • 2.4 Measurement of charge and zeta potential
  • 3. Preparation of suspensions using the top-down process
    • 3.1 Wetting of the bulk powder
    • 3.2 Breaking of aggregates and agglomerates into individual units
    • 3.3 Wet milling or comminution
    • 3.4 Stabilization of the suspension during dispersion and milling and the resulting nanosuspension
    • 3.5 Prevention of Ostwald ripening (crystal growth)
  • 4. Electrostatic stabilization of suspensions
    • 4.1 Introduction
    • 4.2 Structure of the solid/liquid interface
      • 4.2.1 Origin of charge on surfaces
      • 4.2.2 Specific adsorption of ions
    • 4.3 Structure of the electrical double layer
      • 4.3.1 Diffuse double layer (Gouy and Chapman)
      • 4.3.2 Stern–Grahame model of the double layer
    • 4.4 Electrical double layer repulsion
    • 4.5 Van der Waals Attraction
    • 4.6 Total energy of interaction
    • 4.6.1 Deryaguin–Landau–Verwey–Overbeek (DLVO) theory
    • 4.7 Criteria for stabilization of suspensions with double layer interaction
  • 5. Steric stabilization of suspensions
    • 5.1 Introduction
    • 5.2 Adsorption and orientation of nonionic surfactants at the solid/liquid interface
    • 5.3 Polymeric surfactant adsorption
    • 5.4 Interaction between particles containing adsorbed surfactant layers
  • 6. Flocculation of suspensions
    • 6.1 Introduction
    • 6.2 Kinetics of flocculation of electrostatically stabilized suspensions
      • 6.2.1 Diffusion limited aggregation (fast flocculation kinetics)
      • 6.2.2 Potential limited aggregation (slow flocculation kinetics)
      • 6.2.3 Weak (reversible) flocculation
      • 6.2.4 Orthokinetic flocculation
      • 6.2.5 Aggregate structure
    • 6.3 Flocculation of sterically stabilized dispersions
      • 6.3.1 Weak flocculation
      • 6.3.2 Incipient flocculation
      • 6.3.3 Depletion flocculation
      • 6.3.4 Bridging flocculation by polymers and polyelectrolytes
  • 7. Ostwald ripening in suspensions
    • 7.1 Driving force for Ostwald ripening
    • 7.2 Kinetics of Ostwald ripening
    • 7.3 Thermodynamic theory of crystal growth
    • 7.4 Molecular-kinetic theory of crystal growth
    • 7.5 The influence of dislocations on crystal growth
    • 7.6 Influence of impurities on crystal growth and habit
    • 7.7 Polymorphic changes
    • 7.8 Crystal growth inhibition
  • 8. Sedimentation of suspensions and prevention of formation of dilatant sediments
    • 8.1 Introduction
    • 8.2 Sedimentation rate of suspensions
      • 8.2.1 Very dilute suspensions
      • 8.2.2 Moderately concentrated suspensions
      • 8.2.3 Concentrated suspensions
      • 8.2.4 Sedimentation of flocculated suspensions
      • 8.2.5 Sedimentation in non-Newtonian fluids
    • 8.3 Prevention of sedimentation and formation of dilatant sediments
      • 8.3.1 Balance of the density of the disperse phase and medium
      • 8.3.2 Reduction of particle size
      • 8.3.3 Use of high molecular weight thickeners
      • 8.3.4 Use of “inert” fine particles
      • 8.3.5 Use of mixtures of polymers and finely divided particulate solids
      • 8.3.6 Controlled flocculation (“self-structured” systems)
      • 8.3.7 Depletion flocculation
      • 8.3.8 Use of liquid crystalline phases
  • 9. Rheology of suspensions
    • 9.1 Introduction
    • 9.2 Rheological techniques
      • 9.2.1 Steady state measurements
      • 9.2.2 Rheological models for analysis of flow curves
      • 9.2.3 Time effects during flow – thixotropy and negative (or anti-) thixotropy
      • 9.2.4 Constant stress (creep) measurements
      • 9.2.5 Dynamic (oscillatory) measurements
    • 9.3 Rheology of suspensions
      • 9.3.1 Dilute suspensions (? = 0.01) – the Einstein equation
      • 9.3.2 Moderately concentrated suspensions (0.2 > ? > 0.01) – the Bachelor equation
      • 9.3.3 Rheology of concentrated suspensions
  • 10. Nonaqueous suspension concentrates
    • 10.1 Introduction
    • 10.2 Stability of suspensions in polar media
    • 10.3 stability of suspensions in nonpolar media
    • 10.4 Characterization of the adsorbed polymer layer
    • 10.5 Theory of steric stabilization
    • 10.6 Criteria for effective steric stabilization
    • 10.7 Settling of suspensions and preventing the formation of dilatant sediments
    • 10.8 Examples of suspending agents that can be applied for prevention of settling in nonaqueous suspensions
    • 10.9 Emulsification of oil-based suspensions
    • 10.10 Mechanism of spontaneous emulsification and the role of mixed surfactant film
    • 10.11 Polymeric surfactants for oil-based suspensions and the choice of emulsifiers
    • 10.12 Emulsification into aqueous electrolyte solutions
    • 10.13 Proper choice of the antisettling system
    • 10.14 Rheological characteristics of the oil-based suspensions
  • 11. Characterization, assessment and prediction of stability of suspensions
    • 11.1 Introduction
    • 11.2 Assessment of the structure of the solid/liquid interface
      • 11.2.1 Double layer investigation
    • 11.3 Measurement of surfactant and polymer adsorption
    • 11.4 Assessment of sedimentation of suspensions
    • 11.5 Assessment of flocculation and Ostwald ripening (crystal growth)
      • 11.5.1 Optical microscopy
      • 11.5.2 Sample preparation for optical microscopy
      • 11.5.3 Particle size measurements using optical microscopy
      • 11.5.4 Electron microscopy
      • 11.5.5 Confocal laser scanning microscopy (CLSM)
      • 11.5.6 Scanning probe microscopy (SPM)
      • 11.5.7 Scanning tunnelling microscopy (STM)
      • 11.5.8 Atomic force microscopy (AFM)
      • 11.5.9 Scattering techniques
    • 11.6 Measurement of rate of flocculation
    • 11.7 Measurement of incipient flocculation
    • 11.8 Measurement of crystal growth (Ostwald ripening)
    • 11.9 Bulk properties of suspensions, equilibrium sediment volume (or height) and redispersion
    • 11.10 Application of rheological techniques for the assessment and prediction of the physical stability of suspensions
      • 11.10.1 Rheological techniques for prediction of sedimentation and syneresis
      • 11.10.2 Role of thickeners
      • 11.10.3 Assessment and prediction of flocculation using rheological techniques
      • 11.10.4 Examples of application of rheology for assessment and prediction of flocculation
  • 12. Application of suspensions in pharmacy
    • 12.1 Introduction
    • 12.2 Particle size reduction
    • 12.3 Dispersion and stabilization of the drug suspension
    • 12.4 Colloid stability of pharmaceutical suspensions
    • 12.5 Prevention of Ostwald ripening (crystal growth)
    • 12.6 Prevention of particle settling and suspension separation
    • 12.7 Oral suspensions
    • 12.8 Parenteral suspensions
    • 12.9 Ophthalmic suspensions
    • 12.10 Topical suspensions
    • 12.11 Reconstitutable suspensions
  • 13. Applications of suspensions in cosmetics and personal care
    • 13.1 Introduction
    • 13.2 Suspensions in sunscreens
    • 13.3 Suspensions in colour cosmetics
    • 13.4 Lipsticks and lip balms
    • 13.5 Nail polish
    • 13.6 Antiperspirants and deodorants
    • 13.7 Foundations
    • 13.8 Liquid detergents
  • 14. Application of suspensions in paints and coatings
    • 14.1 Introduction
    • 14.2 The disperse particles
    • 14.3 The dispersion medium and film formers
    • 14.4 Deposition of particles and their adhesion to the substrate
    • 14.5 Flow characteristics (rheology) of paints
  • 15. Application of suspensions in agrochemicals
    • 15.1 Introduction
    • 15.2 Preparation of suspension concentrates and the role of surfactants/dispersing agents
    • 15.3 Control of the physical stability of agrochemical suspension concentrates
    • 15.4 Ostwald ripening (crystal growth)
    • 15.5 Stability against claying or caking
  • Index

Количество обращений: 0 
За последние 30 дней: 0

Подробная статистика