Детальная информация

Название: Nuclear physics with stable and radioactive ion beams
Другие авторы: Gramegna (Fabiana),; Duppen P. Van,; Vitturi Andrea; Pirrone S.,
Организация: International School of Physics "Enrico Fermi"
Коллекция: Электронные книги зарубежных издательств; Общая коллекция
Тематика: Nuclear physics — Congresses.; Ion bombardment — Congresses.; EBSCO eBooks
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи: on1111086880

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Оглавление

  • Title Page
  • Contents
  • Preface
  • Course group shot
  • Recent developments in shell model studies of atomic nuclei
    • 1. Introduction
    • 2. Basic points of the shell model
    • 3. Computational aspect-Monte Carlo Shell Model
    • 4. Hamiltonians
    • 5. Emerging concepts on many-body dynamics
    • 6. Shell evolution and monopole interaction
      • 6.1. Monopole interaction
      • 6.2. Effect of monopole interaction
    • 7. Shell evolution due to nuclear forces
      • 7.1. Type-I shell evolution
      • 7.2. Shell evolution due to tensor force
    • 8. Nuclear shape
      • 8.1. Nuclear shapes and quantum phase transition
      • 8.2. Quantum phase transition in Zr isotopes
      • 8.3. Quantum self-organization
    • 9. Summary and perspectives
  • Algebraic models of quantum many-body systems: The algebraic cluster model
    • 1. Introduction
    • 2. Cluster structure of light nuclei
    • 3. The algebraic cluster model
      • 3.1. Classification of states
        • 3.1.1. Dumbbell configuration, k = 2. Z2 symmetry
        • 3.1.2. Equilateral-triangle configuration, k = 3. D3h symmetry
        • 3.1.3. Tetrahedral configuration, k = 4. Td symmetry
      • 3.2. Energy formulas
        • 3.2.1. Dumbbell configuration. Z2 symmetry
        • 3.2.2. Equilateral-triangle configuration. D3h symmetry
        • 3.2.3. Tetrahedral configuration. Td symmetry
      • 3.3. Form factors and transition probabilities
        • 3.3.1. Dumbbell configuration. Z2 symmetry
        • 3.3.2. Equilateral-triangle configuration. D3h symmetry
        • 3.3.3. Tetrahedral configuration. Td symmetry
      • 3.4. Cluster densities
        • 3.4.1. Dumbbell configuration. Z2 symmetry
        • 3.4.2. Equilateral-triangle configuration. D3h symmetry
        • 3.4.3. Tetrahedral configuration. Td symmetry
      • 3.5. Moments of inertia and radii
        • 3.5.1. Dumbbell configuration. Z2 symmetry
        • 3.5.2. Equilateral-triangle configuration, k = 3. D3h symmetry
        • 3.5.3. Tetrahedral configuration, k = 4. Td symmetry
    • 4. Evidence for cluster structures
      • 4.1. Energies
        • 4.1.1. Dumbbell configuration. Z2 symmetry
        • 4.1.2. Equilateral-triangle configuration. D3h symmetry
        • 4.1.3. Tetrahedral configuration. Td symmetry
      • 4.2. Electromagnetic transition rates
        • 4.2.1. Dumbbell configuration. Z2 symmetry
        • 4.2.2. Equilateral-triangle configuration. D3h symmetry
        • 4.2.3. Tetrahedral configuration. Td symmetry
      • 4.3. Form factors
        • 4.3.1. Dumbbell configuration. Z2 symmetry
        • 4.3.2. Equilateral-triangle configuration. D3h symmetry
        • 4.3.3. Tetrahedral configuration. Td symmetry
    • 5. Breaking of the cluster structure. Non-cluster states
    • 6. Softness and higher-order corrections
      • 6.1. Dumbbell configuration. Z symmetry
      • 6.2. Equilateral-triangle configuration. D3h symmetry
      • 6.3. Tetrahedral configuration. Td symmetry
    • 7. Other geometric configurations
    • 8. Conclusions
  • Clustering in light neutron-rich nuclei
    • 1. Introduction
    • 2. Antisymmetrized molecular dynamics
      • 2.1. AMD wave function
      • 2.2. Cluster correlation
    • 3. Clustering in neutron-rich Be
    • 4. Clustering in 12C and neighboring nuclei
      • 4.1. Cluster structures of 12C
      • 4.2. Cluster gas states 12C and 11B and their rotation
      • 4.3. Linear chain structure of 14C
    • 5. Monopole and dipole excitations in light nuclei
      • 5.1. Low-energy monopole and dipole excitations
      • 5.2. Dipole transition operators
      • 5.3. Monopole transitions in 12C
      • 5.4. Dipole excitations in Be
    • 6. Conclusion
  • Density Functional Theory (DFT) for atomic nuclei: A simple introduction
    • 1. Introduction
    • 2. Basics on DFT for electronic systems
    • 3. The nuclear case: the mean-field picture and Hartree-Fock theory
    • 4. Uniform nuclear matter
    • 5. Failure of mean field with simple forces and the need for DFT
    • 6. Examples of nuclear EDFs
    • 7. Examples of calculations of ground-state properties
    • 8. Intrinsic density
    • 9. Symmetry breaking and restoration
    • 10. Extension to the time-dependent case
    • 11. Examples of RPA calculations
    • 12. Limitations of EDFs
    • 13. Conclusions
  • Models for nuclear reactions with weakly bound systems
    • 1. Introduction
    • 2. Some general scattering theory
      • 2.1. The concept of cross section
      • 2.2. Model Hamiltonian and scattering wave function
      • 2.3. An integral equation for fbeta,alpha(theta)
      • 2.4. Gell-Mann-Goldberger transformation (aka two-potential formula)
    • 3. Defining the modelspace
    • 4. Single-channel scattering: the optical model
      • 4.1. Partial wave expansion
      • 4.2. Scattering amplitude
      • 4.3. Coulomb case
      • 4.4. Coulomb plus nuclear case
      • 4.5. Parametrization of the phenomenological optical potential
      • 4.6. Microscopic optical potentials
    • 5. Elastic scattering phenomenology
      • 5.1. Elastic scattering in the presence of strong absorption
      • 5.2. Elastic scattering of weakly bound nuclei
      • 5.3. Coulomb dipole polarization potentials
    • 6. Inelastic scattering: the coupled-channels method
      • 6.1. Formal treatment of inelastic reactions
        • 6.1.1. The coupled-channels (CC) method
        • 6.1.2. Boundary conditions
        • 6.1.3. The DWBA method for inelastic scattering
      • 6.2. Specific models for inelastic scattering
        • 6.2.1. Macroscopic (collective) models
        • 6.2.2. Few-body model
    • 7. Breakup reactions I: quantum-mechanical approach
      • 7.1. The CDCC method
        • 7.1.1. Inclusion of core and target excitations
        • 7.1.2. Extension to three-body projectiles
        • 7.1.3. Connection with the Faddeev formalism
        • 7.1.4. Microscopic CDCC
      • 7.2. Exploring the continuum with breakup reactions
        • 7.2.1. Coulomb breakup
        • 7.2.2. Resonant nuclear breakup
      • 7.3. The problem of inclusive breakup
        • 7.3.1. The IAV model for inclusive breakup
        • 7.3.2. Eikonal approximation to inclusive breakup
      • 7.4. Quasi-free (p,pN) reactions
    • 8. Breakup reactions II: semiclassical methods
      • 8.1. The semiclassical formalism of Alder and Winther
      • 8.2. Dynamic Coulomb polarization potential from the AW theory
    • 9. Transfer reactions
      • 9.1. An exact expression for the transfer amplitude
      • 9.2. The DWBA approximation
      • 9.3. Influence of breakup channels on transfer: the ADWA method
      • 9.4. Continuum Discretized Coupled Channels Born Approximation CDCC-BA
      • 9.5. Transfer reactions populating unbound states
    • 10. Final remarks
  • Nucleon-transfer reactions with radioactive ion beams
    • 1. Introduction
    • 2. Characteristics of nuclear reactions
      • 2.1. Classification
      • 2.2. Importance of transfer reactions
      • 2.3. Conservation of energy
      • 2.4. Conservation of angular momentum
      • 2.5. Spectroscopic factors
    • 3. Transfer reactions with nuclei far from stability
      • 3.1. Inverse kinematics
      • 3.2. Detection setup
    • 4. Case studies
      • 4.1. Light nuclei
      • 4.2. The emergence of N = 16
      • 4.3. The spin-orbit term
      • 4.4. The structure of 0+ states
    • 5. Present and future developments
    • Appendix. Two-body kinematics
  • beta decay studies of the most exotic nuclei
    • 1. Introduction
    • 2. Properties of beta-decay
    • 3. Measuring beta-decays properties, half-lives and logft
    • 4. beta-decay and astrophysics
    • 5. beta-decay in exotic neutron-rich nuclei
    • 6. Conclusions and outlook
  • New developments in laser spectroscopy for RIBs
    • 1. Introduction
    • 2. Nuclear signatures in the optical spectrum
      • 2.1. Finite nuclear size and the isotope shift
      • 2.2. Nuclear moments and the hyperfine splitting
        • 2.2.1. Magnetic hyperfine structure
        • 2.2.2. Electric hyperfine structure
    • 3. Techniques of on-line laser spectroscopy
      • 3.1. Collinear laser spectroscopy
      • 3.2. Resonance ionization spectroscopy (RIS)
    • 4. Examples
      • 4.1. Beryllium - Halos and vanishing shell closures
      • 4.2. Magnesium - The island of inversion
      • 4.3. Calcium - Mystery beyond the N = 28 shell closure
      • 4.4. Cadmium - Simple structure in complex nuclei
      • 4.5. CRIS - Collinear resonance ionization spectroscopy
      • 4.6. In-source resonance ionization spectroscopy: Studies in the Pb region
      • 4.7. Gas-cell resonance ionization spectroscopy: Studying superheavy elements
    • 5. Summary
  • The electric dipole excitation in nuclei: From zero to finite temperature
    • 1. Introduction
    • 2. Pygmy states populated with inelastic scattering of isoscalar probes
    • 3. Isospin mixing at finite temperature in the proton-rich 80Zr
    • 4. Concluding remarks
  • The f7/2 shell: An optimum test bench for nuclear-structure studies
    • 1. Introduction
    • 2. Isospin-symmetry studies in the f7/2 shell
    • 3. Extension to the sd-shell nuclei
    • 4. A new approach: MED and neutron skin
    • 5. Summary
  • Structure function and collective effects in particle evaporation
    • 1. Introduction
    • 2. Particle evaporation from compound nuclei
    • 3. Shape polarization and evaporation spectra
    • 4. Experimental particle structure functions
    • 5. Significance of the shape polarization parameters
    • 6. Possible interpretations of the observed modulations
    • 7. Moment expansion of the evaporation spectra
    • 8. Conclusion
  • Fission dynamics in systems of intermediate fissility
    • 1. Introduction
    • 2. Dynamical vs. statistical approach
    • 3. Dissipation in systems of intermediate fissility
    • 4. The 8piLP apparatus
    • 5. A case study: the system 32S + 100Mo at 200MeV
      • 5.1. Experimental procedure and data analysis
      • 5.2. Statistical model analysis
      • 5.3. Dynamical model analysis
      • 5.4. Angular correlation ER-LCP
      • 5.5. Mass-energy distribution of fission fragments
      • 5.6. Total kinetic-energy distribution of fission fragments
      • 5.7. Mass distribution of fission fragments
      • 5.8. Fission time scale
    • 6. Conclusions and perspectives
  • The time scale of nuclear reactions from Coulomb to Fermi energies
    • 1. Introduction
    • 2. The concept of detection in nuclear reactions
    • 3. The time scale of nuclear reactions in neck fragmentation
    • 4. Conclusion
  • 65 years with Nuclear Physics
    • Introduction
    • 1. The beginning and the years of nuclear spectroscopy: The Amsterdam group
    • 2. The foundation of Nuclear Spectroscopy in Italy. Naples 1959-1966; the collaboration with Amsterdam and Orsay
    • 3. The 1f7/2 story
    • 4. The second and third revolution of nuclear spectroscopy: the germanium detectors for gamma-spectrometry; the heavy-ion accelerators and the in beam spectroscopy
    • 5. Nuclear physics with heavy ions. The advent of the 16MV Tandem at LNL. The evolution of nuclear physics in Italy (years 1980-90)
    • 6. Nuclear physics at CERN. Antinucleon probes (LEAR), the OBELIX experiment, the relativistic heavy ions at SPS and at LHC, the Quark-Gluon Plasma, ALICE in wonderland
    • 7. Final considerations. Facing Nuclear Physics
    • Closing
  • List of participants

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика