Детальная информация

Название: Mechanics of earthquake faulting
Другие авторы: Bizzarri (Andrea),; Das S.,; Petri (Alberto),
Организация: International School of Physics "Enrico Fermi"
Коллекция: Электронные книги зарубежных издательств; Общая коллекция
Тематика: Faults (Geology) — Congresses.; Geodynamics — Congresses.; Earthquakes — Congresses.; EBSCO eBooks
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи: on1111086881

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Оглавление

  • Title Page
  • Contents
  • Preface
  • Course group shot
  • The mechanics of supershear earthquake ruptures
    • 1. Introduction
    • 2. Physical problem
    • 3. Numerical solutions
    • 4. Frequency content
    • 5. The penetration of the forbidden zone
    • 6. The shear-Mach and the Rayleigh-Mach cones
    • 7. The two transition styles: the direct transition and the mother-daughter mechanism
    • 8. Different ground motions
    • 9. Concluding remarks
  • Unusual large earthquakes on oceanic transform faults
    • 1. Introduction
    • 2. Pre-existing zones of weakness on the ocean floor
    • 3. Re-activation of old transform faults: earthquakes with conjugate faulting in oceanic environments
      • 3.1. The 1989 great Macquarie Ridge earthquake reactivated a dormant conjugate fault
      • 3.2. The 1987-1992 and the January 23, 2018 Gulf of Alaska earthquake sequences
      • 3.3. The Mw7.8 18 June 2000 Wharton Basin earthquake: simultaneous rupture of conjugate faults in an oceanic setting
      • 3.4. The January 11 and 12, 2012 twin Sumatra earthquake (Mw8.6,8.2)
    • 4. A great earthquake on a fossil fracture zone: the 2004 Tasman Sea earthquake
      • 4.1. Slip below the Moho during earthquakes
    • 5. A great earthquake with the main fault plane normal to regional transform faults: the 1998 Mw8.1 Antarctic plate earthquake
    • 6. Conclusions
  • The evolution of fault slip rate prior to earthquake: The role of slow- and fast-slip modes
    • 1. Wide spectrum of slip rate from fast- to slow-slip
      • 1.1. Various types of slow earthquakes
      • 1.2. Complexity of slow earthquakes
      • 1.3. The early acceleration phase of slow-slip event
    • 2. Episodic unlocking of fault prior to large earthquake
      • 2.1. Foreshock sequence of the 2011 Mw 9.0 Tohoku-Oki, Japan earthquake
      • 2.2. Foreshock sequence of the 2014 Mw 8.2 Iquique, Chile earthquake
      • 2.3. Triggering of the 2014 Mw 7.3 Papanoa, Mexico earthquake by a slow-slip event
      • 2.4. Foreshock sequence of the 2016 Mw 7.0 Kumamoto, Japan earthquake
    • 3. Discussion
    • 4. Conclusions
  • The spectrum of fault slip modes from elastodynamic rupture to slow earthquakes
    • 1. Introduction
    • 2. Mechanics of slow slip
      • 2.1. Friction laws for slow slip
      • 2.2. Laboratory observations of the full spectrum of slip modes from fast to slow
      • 2.3. Mechanics of laboratory slow earthquakes
    • 3. Earthquake scaling laws for dynamic rupture and slow slip
    • 4. Conclusions
  • From foreshocks to mainshocks: mechanisms and implications for earthquake nucleation and rupture propagation
    • 1. Introduction
    • 2. Foreshocks and mainshocks
      • 2.1. 1934 and 1966 Parkfield, California, USA
      • 2.2. 1992 Joshua Tree, California, USA
      • 2.3. 1999 Izmit, Turkey
      • 2.4. 1999 Hector Mine, California, USA
    • 3. Mainshock initial rupture process
      • 3.1. 1989 Loma Prieta, California, USA
      • 3.2. 2004 Parkfield, California, USA
    • 4. Near source observations at SAFOD
    • 5. Discussion
    • 6. Conclusions
  • Experimental statistics and stochastic modeling of stick-slip dynamics in a sheared granular fault
    • 1. Motivations
      • 1.1. Crackling noise
      • 1.2. The point of view of the statistical physics
      • 1.3. Critical phenomena
      • 1.4. Universality
    • 2. Sheared granular matter in laboratory experiments
      • 2.1. The laboratory set up
      • 2.2. Distribution of dynamical quantities
    • 3. A stochastic model for the slider motion
      • 3.1. The friction force
      • 3.2. Results from the model
    • 4. Criticality and its possible breakdown
      • 4.1. Where does criticality come from?
      • 4.2. The ABBM model
      • 4.3. Breakdown of criticality
    • 5. Summary and perspectives
  • Inversion of earthquake rupture process: Theory and applications
    • 1. Introduction
    • 2. Theory and methods
      • 2.1. Seismic inversion
        • 2.1.1. Inversion with fixed rake
        • 2.1.2. Inversion with rake variation
        • 2.1.3. Limitations and constraints
        • 2.1.4. Equations for the three kinds of inversions
        • 2.1.5. An example: The 2009 Mw6.3 L'Aquila, Italy, earthquake
      • 2.2. Joint inversion of seismic and geodetic data
    • 3. Applications
      • 3.1. The Mw7.8 Kunlun Mountain Pass earthquake of 14 November 2001
        • 3.1.1. Tectonic settings
        • 3.1.2. Aftershocks
        • 3.1.3. Focal mechanism
        • 3.1.4. Distribution of static slip
        • 3.1.5. Source rupture process
        • 3.1.6. Surface ruptures
      • 3.2. The Mw7.9 Wenchuan, Sichuan, earthquake of 12 May 2008
        • 3.2.1. Tectonic setting
        • 3.2.2. Focal mechanism and aftershocks
        • 3.2.3. Distribution of static slip
        • 3.2.4. Source rupture process
      • 3.3. The Mw6.9 Yushu, Qinghai, earthquake of 14 April 2010
        • 3.3.1. Tectonic setting
        • 3.3.2. Focal mechanism
        • 3.3.3. Distribution of static slip
        • 3.3.4. Source rupture process
      • 3.4. Applications to the earthquake emergency response
    • 4. Summary
  • Do plates begin to slip before some large earthquakes?
    • 1. Introduction
    • 2. Izmit earthquake
    • 3. Interplate and intraplate earthquakes
  • Dynamics and spectral properties of subduction earth-quakes
    • 1. Introduction
    • 2. Observations
    • 3. Theory
      • 3.1. Near field from a point source in an infinite medium
      • 3.2. A simplified model
    • 4. The 1 April 2014 Iquique earthquake
    • 5. The 24 April 2017 Valparaiso earthquake
      • 5.1. Observations of the Valparaiso earthquake
    • 6. Discussion
    • 7. Conclusions
  • Earthquake occurrence, recurrence, and hazard
    • 1. Introduction
    • 2. Earthquake phenomenology: the state of the art
    • 3. Earthquakes according to PSHA
      • Assumption 0. A probabilistic model of earthquake occurrence can be derived
      • Assumption 1. Seismicity is known
      • Assumption 2. Seismicity is time independent
      • Assumption 3. Tectonic strain is released by large earthquakes
      • Assumption 4. Strain energy is released by Characteristic Earthquakes
      • Assumption 5. The impossible assumption: Characteristic Earthquakes occurring at random
      • Assumption 6. Exceedance probability and Return Time
      • Assumption 7. The sum of ignorance leads to knowledge: the cognitive democracy of logic trees
    • 4. Discussion
    • 5. Conclusions
  • List of participants

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика