Детальная информация

Название: New Directions in Geometric and Applied Knot Theory
Другие авторы: Blatt Simon; Reiter Philipp; Schikorra Armin
Коллекция: Электронные книги зарубежных издательств; Общая коллекция
Тематика: Knot theory.; MATHEMATICS / Mathematical Analysis.; EBSCO eBooks
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи: on1105905673

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

The aim of this book is to present recent results in both theoretical and applied knot theory-which are at the same time stimulating for leading researchers in the αeld as well as accessible to non-experts. The book comprises recent research results while covering a wide range of di erent sub-disciplines, such as the young αeld of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Оглавление

  • 1 Introduction
  • Geometric curvature energies: facts, trends, and open problems
    • 2.1 Facts
    • 2.2 Trends and open problems
    • Bibliography
  • On Möbius invariant decomposition of the Möbius energy
    • 3.1 O'Hara's knot energies
    • 3.2 Freedman-He-Wang's procedure and the Kusner-Sullivan conjecture
    • 3.3 Basic properties of the Möbius energy
    • 3.4 The Möbius invariant decomposition
      • 3.4.1 The decomposition
      • 3.4.2 Variational formulae
      • 3.4.3 The Möbius invariance
    • Bibliography
  • Pseudogradient Flows of Geometric Energies
    • 4.1 Introduction
    • 4.2 Banach Bundles
      • 4.2.1 General Fiber Bundles
      • 4.2.2 Banach Bundles and Hilbert Bundles
    • 4.3 Riesz Structures
      • 4.3.1 Riesz Structures
      • 4.3.2 Riesz Bundle Structures
      • 4.3.3 Riesz Manifolds
    • 4.4 Pseudogradient Flow
    • 4.5 Applications
      • 4.5.1 Minimal Surfaces
      • 4.5.2 Elasticae
      • 4.5.3 Euler-Bernoulli Energy and Euler Elastica
      • 4.5.4 Willmore Energy
    • 4.6 Final Remarks
    • Bibliography
  • Discrete knot energies
    • 5.1 Introduction
      • 5.1.1 Notation
    • 5.2 Möbius Energy
    • 5.3 Integral Menger Curvature
    • 5.4 Thickness
    • A.1 Appendix: Postlude in -convergence
    • Bibliography
  • Khovanov homology and torsion
    • 6.1 Introduction
    • 6.2 Definition and structure of Khovanov link homology
    • 6.3 Torsion of Khovanov link homology
    • 6.4 Homological invariants of alternating and quasi-alternating cobordisms
    • Bibliography
  • Quadrisecants and essential secants of knots
    • 7.1 Introduction
    • 7.2 Quadrisecants
      • 7.2.1 Essential secants
      • 7.2.2 Results about quadrisecants
      • 7.2.3 Counting quadrisecants and quadrisecant approximations.
    • 7.3 Key ideas in showing quadrisecants exist
      • 7.3.1 Trisecants and quadrisecants.
      • 7.3.2 Structure of the set of trisecants.
    • 7.4 Applications of essential secants and quadrisecants
      • 7.4.1 Total curvature
      • 7.4.2 Second Hull
      • 7.4.3 Ropelength
      • 7.4.4 Distortion
      • 7.4.5 Final Remarks
    • Bibliography
  • Polygonal approximation of unknots by quadrisecants
    • 8.1 Introduction
    • 8.2 Quadrisecant approximation of knots
    • 8.3 Quadrisecants of Polygonal Unknots
    • 8.4 Quadrisecants of Smooth Unknots
    • 8.5 Finding Quadrisecants
    • 8.6 Test for Good Approximations
    • Bibliography
  • Open knotting
    • 9.1 Introduction
    • 9.2 Defining open knotting
      • 9.2.1 Single closure techniques
      • 9.2.2 Stochastic techniques
      • 9.2.3 Other closure techniques
      • 9.2.4 Topology of knotted arcs
    • 9.3 Visualizing knotting in open chains using the knotting fingerprint
    • 9.4 Features of knotting fingerprints, knotted cores, and crossing changes
    • 9.5 Conclusions
    • Bibliography
  • The Knot Spectrum of Random Knot Spaces
    • 10.1 Introduction
    • 10.2 Basic mathematical background in knot theory
    • 10.3 Spaces of random knots, knot sampling and knot identification
    • 10.4 An analysis of the behavior of PK with respect to length and radius
      • 10.4.1 PK(L,R) as a function of length L for fixed R
      • 10.4.2 PK(L,R) as a function of confinement radius R for fixed L
      • 10.4.3 Modeling PK as a function of length and radius.
    • 10.5 Numerical results
      • 10.5.1 The numerical analysis of PK(L,R) based on the old data
      • 10.5.2 The numerical analysis of PK(L,R) based on the new data
      • 10.5.3 The location of local maxima of PK(L,R)
    • 10.6 The influence of the confinement radius on the distributions of knot types
      • 10.6.1 3-, 4-, and 5-crossing knots
      • 10.6.2 6-crossing knots
      • 10.6.3 7-crossing knots
      • 10.6.4 8-crossing knots
      • 10.6.5 9-crossing knots
      • 10.6.6 10-crossing knots
    • 10.7 The influence of polygon length on the distributions of knot types in the presence of confinement
      • 10.7.1 3-, 4-, and 5-crossing knots
      • 10.7.2 6-crossing knots
      • 10.7.3 7-crossing knots
      • 10.7.4 8-crossing knots
      • 10.7.5 9-crossing knots
      • 10.7.6 10-crossing knots
    • 10.8 Conclusions
    • Bibliography
  • Sampling Spaces of Thick Polygons
    • 11.1 Introduction
    • 11.2 Classical Perspectives
      • 11.2.1 Thickness of polygons
      • 11.2.2 Self-avoiding random walks
      • 11.2.3 Closed polygons: fold algorithm
      • 11.2.4 Closed polygons: crankshaft algorithm
      • 11.2.5 Quaternionic Perspective
    • 11.3 Sampling Thick Polygons
      • 11.3.1 Primer on Probability Theory
      • 11.3.2 Open polygons: Plunkett algorithm ChapmanPlunkett2016
      • 11.3.3 Closed polygons: Chapman algorithm
    • 11.4 Discussion and Conclusions
    • Bibliography
  • Equilibria of elastic cable knots and links
    • 12.1 Introduction
    • 12.2 Theory of elastic braids made of two equidistant strands
      • 12.2.1 Equidistant curves, reference frames and strains
      • 12.2.2 Equations for the standard 2-braid
      • 12.2.3 Kinematics equations
    • 12.3 Numerical solution
      • 12.3.1 Torus knots
      • 12.3.2 Torus links
    • 12.4 Concluding remarks
    • Bibliography
  • Groundstate energy spectra of knots and links: magnetic versus bending energy
    • 13.1 Introduction
    • 13.2 Magnetic knots and links in ideal conditions
    • 13.3 The prototype problem
    • 13.4 Relaxation of magnetic knots and constrained minima
    • 13.5 Groundstate magnetic energy spectra
    • 13.6 Bending energy spectra
    • 13.7 Magnetic energy versus bending energy
    • 13.8 Conclusions
    • Bibliography

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика