Details

Никитин, Кирилл Вячеславович. Исследование и анализ динамики импульсных рекуррентных нейронных сетей в контексте задачи распознавания образов [Электронный ресурс] / К. В. Никитин. — Электрон. текстовые дан. (1 файл : 2,59 Мб) // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Сер.: Информатика. Телекоммуникации. Управление, 2018. – Т. 11, № 4 [Электронный ресурс]. — Загл. с титул. экрана. — Электронная версия печатной публикации. — Свободный доступ из сети Интернет (чтение, печать, копирование). — Текстовый файл. — Adobe Acrobat Reader 7.0. — <URL:http://dx.doi.org/10.18721/JCSTCS.11410>. — <URL:http://elib.spbstu.ru/dl/2/j19-165.pdf>.

Record create date: 7/4/2019

Subject: Радиоэлектроника; Искусственный интеллект. Экспертные системы; нейронные сети; рекуррентные нейронные сети; импульсные нейронные сети; распознавание образов; анализ динамики нейронных сетей; резервуарные вычисления; нейроны интегрирования; neural network; recurrent neural networks; pulsed neural networks; pattern recognition; analysis of dynamics of neural networks; tank calculations; integration neurons

UDC: 004.8

LBC: 32.813

Collections: Общая коллекция

Links: DOI

Allowed Actions: Read Download (2.6 Mb) You need Flash Player to read document

Group: Anonymous

Network: FL SPbPU Local Network

Annotation

Проведен анализ существующих моделей рекуррентных нейронных сетей (РНС) и подходов к их обучению. В рамках новой парадигмы – резервуарных вычислений рассмотрена модель на основе импульсной РНС в качестве резервуара. Приведены описание и анализ этой модели, построена иерархия и проведена классификация ее основных параметров. Выделен класс решаемых задач, введены показатели качества резервуара. Выполнено экспериментальное исследование влияния параметров на динамику РНС. Результаты этого исследования использованы в разрабатываемой методике синтеза импульсных РНС. Приведен пример успешного применения данной методики при решении задачи классификации динамических образов.

The article presents the analysis of current models and learning algorithms of recurrent neural networks (RNN). The model of spiking RNN is consideredwithin the new paradigm of reservoir computing (RC). This model was first introduced Maass and is called the liquid state machine (LSM). The main idea of RC is to construct a random recurrent topology and train only a single linear readout layer. A spiking neural network consists of biologically realistic models of spiking neurons and chemical synapses. Analysis of mathematical model of RNN continues with building a hierarchy of its main parameters and their classification by different groups. The main problem solved with the LSM is dynamic pattern recognition. Several measures of reservoir quality are introduced for solving this problem,. After that, an experimental study has been carried out to assess the influence of all parameters of model on the dynamics, behavior and properties of the RNN. Results of this study are used to build the procedure of synthesis of pulsed RNN for the problem of pattern recognition. The final part of the article demonstrates using the proposed procedure for solving a simple problem of dynamic pattern classification. It is shown that it can simplify synthesis and help to improve the quality of pattern recognition.

Document access rights

Network User group Action
-> FL SPbPU Local Network All Read Print Download
Internet All Read Print Download

Document usage statistics

stat Document access count: 52
Last 30 days: 0
Detailed usage statistics