Детальная информация

Название Инженерно-строительный журнал: специализированный научный журнал. — № 8 (92). – 2019.
Выходные сведения Санкт-Петербург: СПбПУ, 2019
Коллекция Общая коллекция
Тематика Строительство ; Сопротивление материалов ; Строительная механика ; Строительные материалы
УДК 624.04(051) ; 69(051) ; 539.3/.6(051)
Тип документа Другой
Тип файла PDF
Язык Русский ; Английский
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\65814
Дата создания записи 02.03.2021

Разрешенные действия

Прочитать Загрузить (19,2 Мб)

Группа Анонимные пользователи
Сеть Интернет
Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все
  • title92
  • реклама1
  • 01
    • Algorithm for shear flows in arbitrary cross-sections of thin-walled bars
      • 1. Introduction
      • 2. Methods
        • 2.1. Problem formulation
        • 2.2. Distribution of shear forces flows along closed contours of an arbitrary cross-section of thin-walled bar
          • 2.2.1. Construction of connected graph Ɠ associated with a section of a thin-walled bar
          • 2.2.2. Resolving equations relating to distribution of shear forces flows taken along closed contours for an arbitrary section of a thin-walled bar
        • 2.3. Resolving equations for an arbitrary cross-section of a thin-walled bar
      • 3. Results and Discussion
        • 3.1. Software implementation
        • 3.2. Example 1: open thin-walled cross-section
        • 3.3. Example 2: open-closed multi-contour thin-walled cross-section
      • 4. Conclusions
    • Алгоритм определения потоков касательных усилий для произвольных сечений тонкостенных стержней
  • 02
    • Thermophysical properties of the soil massif
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
    • Теплофизические свойства массива грунта
  • 03
    • Strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Materials and reagents
          • 2.1.1. Natural pozzolan and limestone powder waste
          • 2.1.2. Synthesis of alkali activator
          • 2.1.3. Aggregates
        • 2.2. Experimental program
          • 2.2.1. Mix design
          • 2.2.2. Sample preparation, mixing, placing and curing
        • 2.3. Evaluation methods
          • 2.3.1. Setting time and workability
          • 2.3.2. Compressive strength
          • 2.3.3. Microstructural characterization of the specimens
      • 3. Results and Discussion
        • 3.1. Effect of LSPW on workability alkaline-activated NP
        • 3.2. Effect of LSPW on setting time of alkaline-activated NP
        • 3.3. Effect of LSPW on compressive strength of alkaline-activated NP
        • 3.4. Effect of limestone powder on microstructures and bonds of alkali-activated mortar
        • 3.5. Effect of NP on microstructures and bonds of alkali-activated mortar
        • 3.6. Effect of NP/LSPW on reaction product, bond characteristic and microstructures of alkali-activation AANL mortar
      • 4. Conclusions
      • 5. Acknowledgements
  • 04
    • Bending and torsion behaviour of CFRP strengthened RC beams
      • 1. Introduction
      • 2. Methods
        • 2.1. Experimental Work Review
        • 2.2. Description of Non-linear Finite Element Analysis (NLFEA)
        • 2.3. Investigated Parameters
        • 2.4. Validation Process
      • 3. Results and Discussion
        • 3.1. Load-Deflection and Torsion-Twist Behavior
        • 3.2. Ductility and Strength ratios
        • 3.3. CFRP strain
        • 3.4. Failure Mode
        • 3.5 . Effect of the clear span to depth ratio
        • 3.6. Effect of CFRP length
        • 3.7. Effect of the CFRP Depth and CFRP Strip Spacing
        • 3.8. Comparison of NLFEA with other results
      • 4. Conclusions
  • 05
    • Increasing the heat transfer efficiency of sectional radiators in building heating systems
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusion
      • 5. Acknowledgments
    • Повышение эффективности теплопередачи секционных радиаторов в системах теплоснабжения зданий
  • 06
    • CFD simulation of the convective flows in the vertical caverns
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Mathematical model of flow in vertical heated cavern
        • 2.2. Numerical simulation of flow in vertical heated cavern
      • 3. Results and Discussions
        • 3.1. Results
        • 3.2. Discussion
      • 4. Conclusion
  • 07
    • Timber frame buildings with efficient junction designs for earthquake-prone areas
      • 1. Introduction
      • 2. Method
      • 3. Results and Discussions
      • 4. Conclusion
    • Деревянные здания каркасного типа с эффективными конструкциями узловых соединений для сейсмически активных районов
  • 08
    • Сlinkerless slag-silica binder: hydration process and hardening kinetics
      • 1. Introduction
      • 2. Materials and Methods0F1
      • 3. Results
      • 4. Discussion
      • 5. Conclusions
      • 6. Acknowledgement
    • Бесклинкерное шлако-кремнеземистое вяжущее: параметры структурообразования и кинетика твердения
  • 09
    • CO2 curing of hydrated lime modified pervious concretes
      • 1. Introduction
      • 2. Methods
        • 2.1. Materials
        • 2.2. Mix designs
        • 2.3. Experiments
        • 2.4. Carbonation curing of the specimens
      • 3. Results and discussion
        • 3.1. Compressive strength
        • 3.2 Tensile strength
        • 3.3. Void content
        • 3.4. Water Permeability
        • 3.5. CO2 absorption capacity (COAC)
      • 4. Conclusion
      • 5. Acknowledgments
  • 10
    • Road organo-mineral mixtures based on oil sludge
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussions
      • 4. Conclusion
    • Дорожные органоминеральные смеси на основе нефтяного шлама
  • 11
    • Stress-strain state of a glass panel with adhesive point fixings
      • 1. Introduction
      • 2. Methods
        • 2.1. Physical model
        • 2.2. Boundary conditions
        • 2.3. Applied load
        • 2.4. Ultimate Limit State
        • 2.5. Serviceability Limit State
      • 3. Results
        • 3.1. Load distribution
        • 3.2. Modification of the number of point fixtures
        • 3.3. Modification of the thickness of the panel
        • 3.4. Modification of the value of fixture edge distance
        • 3.5. Choice of the most optimal structural scheme of façade panel
      • 4. Conclusions
    • Напряженно-деформированное состояние панели из стекла с точечным клеевым креплением
  • 12
    • Effects of model-based design and loading on responses of base-isolated structures
      • 1. Introduction
      • 2. Methods
        • 2.1. Defining Governing Equations
        • 2.2. RK4M Technique
        • 2.3. SMD Technique
        • 2.4. Numerical case study
      • 3. Results and Discussions
        • 3.1. Differences Between RK4M and SMD for the Resulting Responses of Structure
        • 3.2. Differences in TI for RK4M and SMD Methods
        • 3.3. Effect of Earthquake Nature on the Resulting Responses
      • 4. Conclusion
  • 13
    • Failure simulation of a RC multi-storey building frame with prestressed girders
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
    • Моделирование разрушения железобетонного каркаса многоэтажного здания с предварительно напряженными ригелями
  • 14
    • Mechanical and electrical properties of concrete modified by carbon nanoparticles
      • 1. Introduction
      • 2. Materials and Methods
      • 3. Results and Discussion
      • 4. Conclusion
      • 5. Acknowledgements
    • Механические и электрические свойства бетона, модифицированного углеродными наночастицами
  • реклама2
  • оборот
  • index.pdf
    • Содержание
    • E-mail: mce@spbstu.ru
    • Web: http://www.engstroy.spbstu.ru
    • Contents

Количество обращений: 470 
За последние 30 дней: 13

Подробная статистика