Details

Studies on the Radiation Fraction of Propane Jet Diffusion Flames under Crossflow [Электронный ресурс] / J. W. Wang [et al.]. — Электрон. текстовые дан. (1 файл : 511 Кб) // Proceedings of the Ninth International Seminar on Fire and Explosion Hazards [Электронный ресурс]. Vol. 1: 21-26 April 2019, Saint Petersburg, Russia / Peter the Great St. Petersburg Polytechnic University, Autonomous Non-Profit Organization "Fire and Explosion Safety", Gefest Holding Ltd ; [edited by A. Snegirev [et al.]. – Saint Petersburg, 2019. — Загл. с титул. экрана. — Свободный доступ из сети Интернет (чтение, печать, копирование). — Текстовый файл. — Adobe Acrobat Reader 7.0. — <URL:http://elib.spbstu.ru/dl/2/k19-84.pdf>. — <URL:http://doi.org/10.18720/SPBPU/2/k19-84>.

Record create date: 6/7/2019

Collections: Общая коллекция

Links: DOI

Allowed Actions: Read Download (0.5 Mb) You need Flash Player to read document

Group: Anonymous

Network: FL SPbPU Local Network

Annotation

Many industrial combustion devices rely on jet flame combustion in crossflow to achieve mixing and reaction. Studies relating to the determination of the radiation fraction of turbulent jet flames are very important. Previous research affords limited predictive capability regarding the coupling effects of crossflow and jet flow. In this work, a new theoretical prediction equation of radiation fraction is given for its dependence on the fuel mass flow rate and the crossflow velocity. Experiments of turbulent propane jet diffusion flames with 8, 10, 12, and 14 mm exit diameters in 1.0, 1.5 and 2.0 m/s cross-winds were carried out in a wind tunnel. The jet Reynolds numbers varied from 1082 to 4711 and the jet-tocrossflow momentum flux ratio ranged from 0.1 to 10. The radiation fraction is almost independent of the nozzle diameter under low crossflow velocity, and the crossflow has the largest effects on the radiation fraction for smaller nozzle diameters. These occurred mainly because of the effects of crossflow and jet flow velocities on the soot residence time that is proportional to the radiation fraction.

Document access rights

Network User group Action
-> FL SPbPU Local Network All Read Print Download
Internet All Read Print Download

Document usage statistics

stat Document access count: 61
Last 30 days: 3
Detailed usage statistics