Детальная информация

Название: Development of deep learning controller for DC motor System: магистерская диссертация: 09.04.01
Авторы: Хан Мааз Ахмед
Научный руководитель: Потехин Вячеслав Витальевич
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения: Санкт-Петербург, 2017
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: Электродвигатели постоянного тока; Обучающие машины; Контроллеры программные
УДК: 004.312.46:004.85(43.3); 004.588:621.313.13.024(43.3)
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Английский
Код специальности ФГОС: 09.04.01
Группа специальностей ФГОС: 090000 - Информатика и вычислительная техника
Ссылки: http://doi.org/10.18720/SPBPU/2/v17-2596
Права доступа: Свободный доступ из сети Интернет (чтение)

Разрешенные действия: Прочитать Для чтения документа необходим Flash Player

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

This thesis addresses the use of deep learning algorithm i.e Stacked Autoencoders to propose the controller; to discover the viability of applying deep learning into control problems. The suggested deep learning controller is designed by learning PID controller which is most usually used in industry. The input and output of the PID controller are used as a data set for teaching the deep learning network. Stacked Autoencoders are used to design the deep learning controller. The simulation is performed using MatLab/Simulink and the detailed results of a comparison study between the suggested deep learning controller and a PID controller was conducted to demonstrate the performance and effectiveness of the proposed algorithm.

Предлагаемый регулятор самообучения рассчитан на изучение ПИД-регулятора, который чаще всего используется в промышленности. Вход и выход ПИД-регулятора используются в качестве набора данных для обучения сети глубокого обучения. Наборный автоэнкодер используется для разработки регулятора самообучения. Моделирование выполняется с использованием пакета MATLAB/simulink и подробные результаты исследования сравнение между предлагаемой регулятор самообучения и ПИД-регулятор были проведены для демонстрации работоспособности и эффективности предложенного алгоритма.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать
-> Интернет Все Прочитать

Статистика использования документа

stat Количество обращений: 101
За последние 30 дней: 1
Подробная статистика