Детальная информация

Воробей, Евгений Александрович. Разработка нейросетевого метода обнаружения элементов конструкции международной космической станции [Электронный ресурс]: бакалаврская работа: 15.03.06 / Е. А. Воробей; Санкт-Петербургский политехнический университет Петра Великого, Институт металлургии, машиностроения и транспорта; науч. рук. А. В. Бахшиев. — Электрон. текстовые дан. (1 файл : 15,3 МБ). — Санкт-Петербург, 2017. — Загл. с титул. экрана. — Свободный доступ из сети Интернет (чтение, печать). — Adobe Acrobat Reader 7.0. — <URL:http://elib.spbstu.ru/dl/2/v17-4868.pdf>. — <URL:http://doi.org/10.18720/SPBPU/2/v17-4868>.

Дата создания записи: 25.10.2017

Тематика: Нейронные сети; Распознавание образов; Космические летательные аппараты; международные космические станции; стыковка; глубокое облучение

Коллекции: Выпускные квалификационные работы; Общая коллекция

Ссылки: DOI

Разрешенные действия: Прочитать Для чтения документа необходим Flash Player

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Данная работа представляет исследование нейронной сети Faster R-CNN для обнаружения и распознавания частей международной космической станции. В результате исследования был получен детектор-классификатор для определения координат частей МКС на фотографиях.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать
-> Интернет Все Прочитать Печать

Оглавление

  • Введение
  • 1 Анализ проблемы обнаружения особых конструкций на МКС в системе стыковки
    • 1.1 Алгоритм решения задачи поиска и определения объектов
    • 1.2 Классические методы обнаружения объектов на изображении
    • 1.3 Каскадные классификаторы
    • 1.4 Нейронные сети
    • 1.5 Цели и задачи работы
    • 1.6 Выводы
  • 2 Анализ архитектур нейронных сетей для решения задачи
    • 2.1 DetectNet
    • 2.2 Yolo
    • 2.3 SSD: Single Shot MultiBox Detector
    • 2.4 Faster R-CNN
    • 2.5 Выводы
  • 3 Математическое описание работы сети
    • 3.1 Описание работы основных слоев нейронной сети
      • 3.1.1 Сверточный слой
      • 3.1.2 Полносвязный слой
      • 3.1.3 Слой активации (ReLU)
      • 3.1.4 Объединяющий слой (pooling)
      • 3.1.5 Обучение сети
    • 3.2 Описание сети Faster R-CNN
    • 3.3 Описание блоков RPN R-CNN и конфигурация сети
      • 3.3.1 Описание блоков сети RPN и RCNN
      • 3.3.2 Чередующееся обучение (Alternating training)
      • 3.3.3 Приближенное обучение (Approximate joint training)
      • 3.3.4 Точное обучение (Non-approximate joint training)
      • 3.3.5 Четырехэтапное чередующееся обучение (4-Step Alternating Training)
    • 3.4 Выводы
  • 4 Разработка и исследование системы распознавания
    • 4.1 План экспериментальных исследований
    • 4.2 Анализ входных данных
    • 4.3 Подготовка и написание программ тестирования нейронных сетей
    • 4.4 Модификация Faster R-CNN для удобства обучения
    • 4.5 Подготовка данных к обучению
    • 4.6 Обучение нейронных сетей. Исследование влияния данных и гиперпараметров на процесс обучения
      • 4.6.1 Обучение с использованием предобученной модели imagenet
      • 4.6.2 Получение предобученной модели
      • 4.6.3 Использование четырехэтапного алгоритма обучения
    • 4.7 Выводы
  • Заключение
  • Список используемых источников

Статистика использования документа

stat Количество обращений: 256
За последние 30 дней: 7
Подробная статистика