Детальная информация

Название: Прогнозирование цен акций с использованием рекуррентной нейронной сети: выпускная квалификационная работа магистра: 09.04.04 - Программная инженерия ; 09.04.04_01 - Технология разработки и сопровождения качественного программного продукта
Авторы: Овсепян Анушик Владиковна
Научный руководитель: Амосов Владимир Владимирович
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения: Санкт-Петербург, 2018
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: Нейронные сети; Вычислительные машины электронные персональные — Библиотеки программ; фондовые рынки; акции
УДК: 004.032.26
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 09.04.04
Группа специальностей ФГОС: 090000 - Информатика и вычислительная техника
Ссылки: http://doi.org/10.18720/SPBPU/2/v18-1450; http://elib.spbstu.ru/dl/2/rev/v18-1450-o.pdf; http://elib.spbstu.ru/dl/2/rev/v18-1450-r.pdf
Права доступа: Свободный доступ из сети Интернет (чтение)

Разрешенные действия: Прочитать Для чтения документа необходим Flash Player

Группа: Анонимные пользователи

Сеть: Локальная сеть ИБК СПбПУ

Аннотация

Объектом исследования является определение эффективной модели для прогнозирования цен на акции на основе рекуррентной нейронной сети. В этой работе применяются VanillaRNN, LSTM и GRU сети для прогноза цен на акции на примере компании PorscheAutomobilHolding SE и сравниваются полученные результаты. Эффективность модели была количественно оценена с помощью метода среднеквадратичной ошибки RMSE. Программная реализация выполнена с использованием библиотек для машинного обучения и сложных математических вычислений, таких как Keras, TensorFlow, scikit-learn, Pandas, NumPy и представляет собой скрипт на языке программирования Python 3.5.5. Результатом данной выпускной квалификационной работы является разработка модели для прогнозирования цен с целью её дальнейшего применения в краткосрочной торговле.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
-> Локальная сеть ИБК СПбПУ Все Прочитать
Интернет Все Прочитать

Статистика использования документа

stat Количество обращений: 131
За последние 30 дней: 1
Подробная статистика