Детальная информация

Название Прогнозирование цен акций с использованием рекуррентной нейронной сети: выпускная квалификационная работа магистра: 09.04.04 - Программная инженерия ; 09.04.04_01 - Технология разработки и сопровождения качественного программного продукта
Авторы Овсепян Анушик Владиковна
Научный руководитель Амосов Владимир Владимирович
Организация Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения Санкт-Петербург, 2018
Коллекция Выпускные квалификационные работы ; Общая коллекция
Тематика Нейронные сети ; Вычислительные машины электронные персональные — Библиотеки программ ; фондовые рынки ; акции
УДК 004.032.26
Тип документа Выпускная квалификационная работа магистра
Тип файла PDF
Язык Русский
Уровень высшего образования Магистратура
Код специальности ФГОС 09.04.04
Группа специальностей ФГОС 090000 - Информатика и вычислительная техника
Ссылки Отзыв руководителя ; Рецензия
DOI 10.18720/SPBPU/2/v18-1450
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\56165
Дата создания записи 09.11.2018

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет

Объектом исследования является определение эффективной модели для прогнозирования цен на акции на основе рекуррентной нейронной сети. В этой работе применяются VanillaRNN, LSTM и GRU сети для прогноза цен на акции на примере компании PorscheAutomobilHolding SE и сравниваются полученные результаты. Эффективность модели была количественно оценена с помощью метода среднеквадратичной ошибки RMSE. Программная реализация выполнена с использованием библиотек для машинного обучения и сложных математических вычислений, таких как Keras, TensorFlow, scikit-learn, Pandas, NumPy и представляет собой скрипт на языке программирования Python 3.5.5. Результатом данной выпускной квалификационной работы является разработка модели для прогнозирования цен с целью её дальнейшего применения в краткосрочной торговле.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи

Количество обращений: 170 
За последние 30 дней: 0

Подробная статистика