Детальная информация
Название | Персонализация веб-приложения с использованием библиотек Python: магистерская диссертация: 09.04.03 |
---|---|
Авторы | Тихонова Анастасия Сергеевна |
Научный руководитель | Иванищев Алексей Вячеславович |
Организация | Санкт-Петербургский политехнический университет Петра Великого. Институт промышленного менеджмента, экономики и торговли |
Выходные сведения | Санкт-Петербург, 2018 |
Коллекция | Выпускные квалификационные работы ; Общая коллекция |
Тематика | Питон (Python) ; Программирования языки ; Базы данных ; Вычислительные машины электронные персональные — Программирование ; локально-чувствительное хеширование ; расстояние Хэмминга |
УДК | 004.655.3(043.3) ; 004.438(043.3) ; 004.651.54(043.3) |
Тип документа | Выпускная квалификационная работа магистра |
Тип файла | |
Язык | Русский |
Уровень высшего образования | Магистратура |
Код специальности ФГОС | 09.04.03 |
Группа специальностей ФГОС | 090000 - Информатика и вычислительная техника |
DOI | 10.18720/SPBPU/2/v18-346 |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Ключ записи | RU\SPSTU\edoc\52148 |
Дата создания записи | 21.03.2018 |
Разрешенные действия
–
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа | Анонимные пользователи |
---|---|
Сеть | Интернет |
Объектом исследования являются виды рекомендательных систем, принципы их построения, а также проблемы, с которыми сталкиваются разработчики при эксплуатации рекомендательных систем в режиме реального времени с использованием стандартного ПО. Цель работы: реализация методики разработки рекомендательной системы внутри базы данных MySQL с экономным расходом памяти. В данной работе исследованы виды рекомендательных систем, принципы их построения, а также проблемы, с которыми сталкиваются разработчики при эксплуатации рекомендательных систем в режиме реального времени с использованием стандартного ПО. Для преодоления этих проблем были изучены методы обработки и анализа данных с использованием библиотек Python и выработан алгоритм действий, на основании которого была реализована методика разработки рекомендательной системы с экономным расходом памяти.
Место доступа | Группа пользователей | Действие |
---|---|---|
Локальная сеть ИБК СПбПУ | Все |
|
Интернет | Авторизованные пользователи СПбПУ |
|
Интернет | Анонимные пользователи |
|
Количество обращений: 684
За последние 30 дней: 0