Details

Title: Напряженно-деформированное состояние бандажных полок рабочих лопаток паровых и газовых турбин (пакет ANSYS CFX): выпускная квалификационная работа магистра: 13.04.03 - Энергетическое машиностроение ; 13.04.03_02 - Паровые и газовые турбины
Creators: Калакутский Максим Игоревич
Other creators: Ласкин Александр Степанович
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт энергетики и транспортных систем
Imprint: Санкт-Петербург, 2017
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Газовые турбины — Лопатки; Паровые турбины — Лопатки
UDC: 621.438-226.2; 621.165-226.2
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Level of education: Master
Speciality code (FGOS): 13.04.03
Speciality group (FGOS): 130000 - Электро- и теплоэнергетика
DOI: 10.18720/SPBPU/2/v18-709
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key: RU\SPSTU\edoc\53331

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Предметом исследования дипломного проекта является газотурбинная установка мощностью 50 МВт. Дипломный проект состоит из 6 глав, одна из которых является вводной. В вводной части рассказывается о видах бандажей. Во второй главе рассматриваются условия работы рабочей лопатки пятой ступени турбины ГТУ., а также производится предварительная оценка НДС рабочей лопатки. Третья глава посвящена особенностям напряженно-деформированного состояния бандажной полки рабочей лопатки ГТУ. В четвертой главе проводится определение метода решения задачи, выбор расчетного пакета, возможности расчетного пакета ANSYS. Пятая глава посвящена определению напряженно-деформированного состояния для двух конструкций бандажной полки. В шестой главе представлены результаты расчетов. Исследования, проведенные в дипломном проекте, могут быть использованы для дальнейших исследований рабочих лопаток ГТУ с бандажом.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users SPbPU Read Print Download
-> Internet Anonymous

Table of Contents

  • Кафедра: Турбины, гидромашины и авиационные двигатели
    • «Утверждаю»
      • Зав. кафедрой ________________Н.А. Забелин
    • (подпись)
      • ПЛАН
  • 5.1 Обзор конструкций бандажных полок рабочих лопаток газовых и паровых турбин
    • Научный руководитель _______________________________________/Ласкин А.С./
      • План принял к исполнению _____________________
  • 1. Вводная часть
    • 1.1 Виды конструкций бандажных полок
    • 2.Условия работы рабочей лопаткипятой ступени турбины ГТУ
    • 2.1. Предварительная оценка НДС рабочей лопатки ГТУ
    • По зависимостям на рисунке 3.5 и их сопоставлению можно судить о доминирующем влиянии вида исследуемого сопротивления. Из рисунка 3.5 следует, что определение декремента при произвольной амплитуде возможно только в случае n=1, то есть вязком сопротивлении. При сухом трении n=0 декремент с ростом амплитуд уменьшается, а при квадратичном сопротивлении возрастает.
    • 3.2.Характеристики вынужденного движения систем с различными видами сопротивления
    • 4.Метод решения задачи. Выбор расчетного пакета. Возможности расчетного пакета ANSYS
    • 4.1.Метод конечных элементов
    • В связи с тем, что инженерный расчет не дает полной оценки напряженно-деформированного состояния, особенно для случаев концентрации напряжений, необходимо использовать метод конечных элементов (МКЭ), который является мощным и надежным средством исследования поведения конструкций в условиях сложной формы, к которой относятся рабочие лопатки.
    • В настоящее время на рынке программного обеспечения имеется большое количество комплексов МКЭ, в том числе ANSYS, NASTRAN, ABAQUS, COSMOS и др. Традиционно эти продукты относятся к категории CAE (ComputerAidedEngineering) программного обеспечения, применяемого при проектировании машиностроительных, строительных и других конструкций. Эта категория программного обеспечения занимает прочное место в списке CAD/CAM/CAE/GIS/ PDM, продуктами из которого в том или ином виде пользуется большинство инженеров во всем мире.
    • Метод конечных элементов ANSYS широко известен и пользуется популярностью среди инженеров-исследователей, занимающихся вопросами динамики и прочности. Средства МКЭ ANSYS позволяют проводить расчеты статического и динамического напряженно-деформированного состояния конструкций (в том числе геометрически и физически нелинейных задач механики деформируемого твердого тела), форм и частот колебаний, анализа устойчивости конструкций, нелинейных переходных процессов и др.
    • При использовании метода конечных элементов начинают с изучения свойств элементов конечных размеров. При установлении этих свойств могут использоваться уравнения, описывающие поведение континуума, но размеры элементов остаются все время конечными, интегрирование заменяется конечным суммированием, а дифференциальные уравнения в частных производных заменяются системами алгебраических уравнений. Сплошная область с бесконечным числом степеней свободы представляется, таким образом, дискретной моделью с конечным числом степеней свободы. При этом если удовлетворяются условия полноты, то с увеличением числа конечных элементов и уменьшении их размеров поведение дискретной системы приближается к поведению сплошной среды. Существенной особенностью такого подхода является то, что он в принципе применим к исследованию конечных деформаций анизотропных тел любой геометрической формы при произвольных краевых условиях, так как препроцессор МКЭ позволяет как импортировать, так и создавать заново достаточно сложные геометрические модели для дальнейших расчетов.
    • Во многих случаях логически взаимосвязанное применение средств CAD и CAE приводит к существенному ускорению подготовки расчетных моделей для исследования прочностных, динамических и иных рассчитываемых свойств, и характеристик проектируемой конструкции. Одними из наиболее распространенных и освоенных специалистами комплексов CAD является AutoCAD, средство для трехмерного моделирования деталей, поверхностей, сборок.
    • Поэтому в данной работе все геометрические модели были созданы в программе AutoCAD, а расчеты на прочность и вибрационные характеристики были рассчитаны в программе ANSYS.
    • Однако численный анализ, к которому относится МКЭ, требует некоторой идеализации реальной конструкции. Поэтому несмотря на мощное развитие вычислительной техники результаты вычислений по МКЭ не свободны от ошибок. Ошибки могут возникать на различных стадиях конечно-элементного анализа: при постановке задачи, построении модели, численном решении. Ошибки постановки задачи могут возникать, когда выбранный тип конечных элементов или их размер не соответствуют физическому поведению материала в конструкции. Однако основным источником ошибок является некорректное задание граничных условий. Ошибки, связанные с численным решением систем уравнений, обычно менее значимы, чем перечисленные типы ошибок.
    • 4.2.Напряженно-деформированное состояние рабочей лопатки ГТУ (с помощью МКЭ программыANSYS)
  • 6. Результаты расчетов
  • 6.1. Расчет первого варианта бандажной полки
  • 6.1.1. Бандаж без заделки
  • 6.1.2. Бандаж с зазором 0,5 мм
  • 6.1.3.Бандаж с зазором 1 мм
  • 6.1.4.Бандаж с идеальным защемлением
  • 6.2. Расчет второго варианта бандажной полки
  • 6.2.1. Бандаж без заделки
  • 6.2.2. Бандаж с зазором 0,5 мм
  • 6.2.3.Бандаж с зазором 1 мм
  • 6.2.4.Бандаж с идеальным защемлением
  • Заключение и выводы
  • Список литературы

Usage statistics

stat Access count: 173
Last 30 days: 2
Detailed usage statistics