Details
Title | Алгоритмы компьютерного зрения движущегося автомобиля: выпускная квалификационная работа магистра: 09.04.01 - Информатика и вычислительная техника ; 09.04.01_02 - Интеллектуальные системы |
---|---|
Creators | Наджафи Каджабад Эбрахим |
Scientific adviser | Малыхина Галина Федоровна |
Other creators | Киселева Людмила Анатольевна |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий |
Imprint | Санкт-Петербург, 2018 |
Collection | Выпускные квалификационные работы ; Общая коллекция |
Subjects | Транспортные средства ; Искусственный интеллект ; Алгоритмы ; Вычислительные системы |
UDC | 004.891:629.33 ; 004.421 |
Document type | Master graduation qualification work |
File type | |
Language | Russian |
Level of education | Master |
Speciality code (FGOS) | 09.04.01 |
Speciality group (FGOS) | 090000 - Информатика и вычислительная техника |
Links | Отзыв руководителя ; Рецензия |
DOI | 10.18720/SPBPU/2/v18-946 |
Rights | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Record key | RU\SPSTU\edoc\55844 |
Record create date | 11/7/2018 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
Интеллектуальная транспортная система - это новая технология, которая может играть важную роль в борьбе с трафиком, уменьшением аварийности, загрязнением воздуха и другими вещами. Существует множество методов, которые могут использоваться для управления автономным транспортным средством, чтобы избежать несчастного случая, такие как электронные системы, датчики, системы компьютерного зрения, глубокое обучение и машинное обучение. Среди них системы компьютерного зрения и глубокое обучение становятся все более популярными для преодоления различных проблем, таких как выезд за полосы, обнаружение препятствий и обнаружение линии. В настоящем документе предлагаются методы компьютерной визуализации, основанные на обработке изображений, для отслеживания и обнаружения транспортных средств в режиме реального времени. Эти методы включают в себя Cascade Classifier, сверточную нейронную сеть (CNN), алгоритм преобразования линии Hough и цветовое пространство HSV. Для реализации каскадного классификатора использовалась библиотека OpenCV, а для CNN использовался Tensorflow, оба они являются библиотеками с открытым исходным кодом и работают на основе машинного обучения. Наконец, результат показал, что эти алгоритмы были быстрыми и с высокой точностью обнаруживают транспортные средствав реальном времени. Эти методы наиболее полезны для мобильных роботов, для избегания несчастных случаев, а также чтобы найти собственное местоположение в окружающей среде. Кроме того, может быть полезно для промышленного робота, для обнаружения объекта на основе специального цвета.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
Access count: 106
Last 30 days: 0