Details

Title Алгоритмы компьютерного зрения движущегося автомобиля: выпускная квалификационная работа магистра: 09.04.01 - Информатика и вычислительная техника ; 09.04.01_02 - Интеллектуальные системы
Creators Наджафи Каджабад Эбрахим
Scientific adviser Малыхина Галина Федоровна
Other creators Киселева Людмила Анатольевна
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2018
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Транспортные средства ; Искусственный интеллект ; Алгоритмы ; Вычислительные системы
UDC 004.891:629.33 ; 004.421
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.01
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
Links Отзыв руководителя ; Рецензия
DOI 10.18720/SPBPU/2/v18-946
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key RU\SPSTU\edoc\55844
Record create date 11/7/2018

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Интеллектуальная транспортная система - это новая технология, которая может играть важную роль в борьбе с трафиком, уменьшением аварийности, загрязнением воздуха и другими вещами. Существует множество методов, которые могут использоваться для управления автономным транспортным средством, чтобы избежать несчастного случая, такие как электронные системы, датчики, системы компьютерного зрения, глубокое обучение и машинное обучение. Среди них системы компьютерного зрения и глубокое обучение становятся все более популярными для преодоления различных проблем, таких как выезд за полосы, обнаружение препятствий и обнаружение линии. В настоящем документе предлагаются методы компьютерной визуализации, основанные на обработке изображений, для отслеживания и обнаружения транспортных средств в режиме реального времени. Эти методы включают в себя Cascade Classifier, сверточную нейронную сеть (CNN), алгоритм преобразования линии Hough и цветовое пространство HSV. Для реализации каскадного классификатора использовалась библиотека OpenCV, а для CNN использовался Tensorflow, оба они являются библиотеками с открытым исходным кодом и работают на основе машинного обучения. Наконец, результат показал, что эти алгоритмы были быстрыми и с высокой точностью обнаруживают транспортные средствав реальном времени. Эти методы наиболее полезны для мобильных роботов, для избегания несчастных случаев, а также чтобы найти собственное местоположение в окружающей среде. Кроме того, может быть полезно для промышленного робота, для обнаружения объекта на основе специального цвета.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 106 
Last 30 days: 0

Detailed usage statistics