Details

Title: Разработка системы синтеза речи с использованием методов глубокого обучения: выпускная квалификационная работа магистра: 09.04.01 - Информатика и вычислительная техника ; 09.04.01_18 - Встраиваемые системы управления
Creators: Чжу Сяосюй
Scientific adviser: Никитин Кирилл Вячеславович
Other creators: Новопашенный Андрей Гелиевич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2019
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Нейронные сети; Вокодеры; Кодирующие и декодирующие устройства; Речь — Анализ и синтез; синтез речи
UDC: 004.312.26(043.3); 004.934.5(043.3)
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 09.04.01
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
Links: http://doi.org/10.18720/SPBPU/3/2019/vr/vr19-691; http://elib.spbstu.ru/dl/3/2019/vr/rev/vr19-691-o.pdf; http://elib.spbstu.ru/dl/3/2019/vr/rev/vr19-691-r.pdf; http://elib.spbstu.ru/dl/3/2019/vr/rev/vr19-691-a.pdf
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)

Allowed Actions: Read Download (2.9 Mb) You need Flash Player to read document

Group: Anonymous

Network: Internet

Annotation

В ходе магистерской диссертации разработана модель "Seq2seq-CWRNN-Attention" - сетевая архитектура синтеза речи на основе модели "tacotron". Вначале текстовые символы преобразуются в Мел-спектр, а затем вокодером "Гриффина-Лима" синтезируется форма речевой волны. Разработанная система является модификацией архитектуры модели "tacotron". Специальная заводная ("clockwork") РНС используется в кодере для уменьшения числа параметров обучения, РНС типа "MultiLSTM" используется для выделения признаков. Некоторая часть подсистем в кодировщике убрана в целях упрощения модели. В системе декодирования используется НС LSTM для повышения точности.

This work describes Seq2seq-CWRNN-Attention, a sequence to sequence network architecture for end-to-end speech synthesis based on tacotron. Characters are mapped to the Mel spectrum through the system, and then the waveform is synthesized by the Griffin-Lim vocoder. The system is greatly optimized for the tacotron model architecture: Clockwork RNN is used in the encoder to reduce the number of training parameters; MultiLSTM is used instead of HighwayNet and the residual connection in the encoder is removed, which simplifies the model; used LSTM decoder improves mapping accuracy.

Document access rights

Network User group Action
FL SPbPU Local Network All Read Print Download
-> Internet All Read Print Download

Document usage statistics

stat Document access count: 26
Last 30 days: 0
Detailed usage statistics