Details

Title: Biological membranes. Transport mechanisms: schoolbook
Creators: Orlov Yu. N.
Organization: Peter the Great St. Petersburg Polytechnic University
Imprint: Saint-Petersburg, 2023
Collection: Учебная и учебно-методическая литература; Общая коллекция
Subjects: Биологические мембраны; molecular biology; cell membranes; transport mechanisms; bioenergetics; учебники и пособия для вузов
UDC: 577.352.3(075.8)
Document type: Tutorial
File type: PDF
Language: Russian
Speciality code (FGOS): 12.04.04
Speciality group (FGOS): 120000 - Фотоника, приборостроение, оптические и биотехнические системы и технологии
DOI: 10.18720/SPBPU/5/tr23-171
Rights: Доступ по паролю из сети Интернет (чтение, печать)
Record key: RU\SPSTU\edoc\72044

Allowed Actions:

Action 'Read' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

The purpose of this textbook is to examine the molecular mechanisms of metabolite transport across biological membranes, as well as energy transformation in living cells. The schoolbook also presents current data on the structure and functions of biological membranes and their role in the regulation of signal transduction and vesicular traffic. The schoolbook is intended for training in undergraduate and graduate programs for the educational areas "Physics" (03.03.02), "Technical Physics" (16.03.01) and "Biotechnical Systems and Technologies" (12.03.04, 12.04.04), as well as for graduate students in Biophysics (1.5.2) and Molecular Biology (1.5.3).

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print
Internet Authorized users SPbPU Read Print
-> Internet Anonymous

Table of Contents

  • CONTENTS
  • CHAPTER 1. THE STRUCTURE OF BIOLOGICAL MEMBRANES
  • 1.1. GENERAL COMPONENTS OF BIOLOGICAL MEMBRANES
  • 1.2. HISTORICAL MILESTONES
  • 1.3. BASIC FUNCTIONS OF CELLULAR MEMBRANES
  • CHAPTER 2. LIPIDS AND LIPID BILAYER
  • 2.1. STRUCTURE OF LIPID MOLECULES
  • 2.2. COOPERATIVE BEHAVIOR OF LIPIDS IN AQUEOUS SOLUTIONS
  • 2.3. LIPID DIVERSITY OF NATURAL MEMBRANES
  • 2.4. PERMEABILITY OF THE LIPID BILAYER TO LOW MOLECULAR WEIGHT COMPOUNDS
  • CHAPTER 3. MEMBRANE POTENTIALS
  • 3.1 DIFFUSE ELECTRIC DOUBLE LAYER
  • 3.2. NERNST POTENTIAL
  • 3.3. THE OSMOTIC PRESSURE
  • 3.4. GIBBS-DONNAN POTENTIAL
  • 3.5. THE STATIONARY POTENTIAL OF DIFFUSION CURRENT
  • 3.6. THE POTENTIAL OF CELL MEMBRANES
  • 3.7. pH-DEPENDENT DISTRIBUTION OF WEAK ACIDS BETWEEN TWOCOMPARTMENTS
  • CHAPTER 4. ISOLATION OF CELLULAR ORGANELLES
  • 4.1. MARKER ENZYMES
  • 4.2. THE KEY STEPS IN ORGANELLE SEPARATION
  • 4.3. ORIENTATION OF MEMBRANE PARTICLES
  • CHAPTER 5. TRANSPORT MECHANISMS
  • 5.1. CLASSIFICATION OF TRANSPORT MECHANISMS
  • 5.2. ION PUMPS
  • 5.2.1. Ca2+-ATPase
  • 5.2.2. Na+,K+-ATPase
  • 5.2.3. ABC-ATPases
  • CHAPTER 6. CELLULAR ENERGETICS. H+-ATP-SYNTHASE
  • 6.1. PRINCIPLES OF BIOENERGY
  • 6.2. ENERGY COUPLING OF CHEMICAL REACTIONS
  • 6.3. PROTON GRADIENT AS AN ENERGY SOURCE
  • 6.4. PROTON ELECTROCHEMICAL POTENTIAL IN MITOCHONDRIA
  • 6.5. MECHANISM OF H+-ATP-SYNTHASE
  • 6.5.1. General features of proton ATP synthases
  • 6.5.2. Subunit composition of H+-ATP synthase
  • 6.5.3. Rotor and stator of H+-ATP synthase
  • 6.5.4. Rotation of the molecular motor
  • 6.5.5. Proton channel of H+-ATP synthase
  • 6.5.6. ATP synthesis
  • 6.5.7. Release of ATP from mitochondria into cellular cytoplasm
  • 6.6. SYMPORT AND ANTIPORT: SECONDARY ACTIVE TRANSPORT
  • 6.6.1. Early concepts of transport kinetics
  • 6.6.2. Modern concepts of transport reaction
  • 6.6.3. Interpretation of transport kinetic schemes
  • 6.6.4. Antiport mechanism
  • 6.6.5. Symport mechanism
  • 6.6.6. The coupling of ion pump, symport, and antiport
  • CHAPTER 7. THE INVESTIGATION OF THE STRUCTURE OF MEMBRANE PROTEINS
  • 7.1. RECONSTRUCTION OF MEMBRANE PROTEINS
  • 7.2. MEMBRANE PROTEINS CLONING
  • 7.3. THE ART OF CRYSTALLIZATION
  • 7.3.1. 2D CRYSTALLIZATION OF MEMBRANE PROTEINS
  • 7.3.2. 3D CRYSTALLIZATION OF MEMBRANE PROTEINS
  • 7.4. MEMBRANE PROTEINS TOPOLOGY
  • 7.4.1. Topogenic factors
  • 7.4.2. Translocon determines the membrane segments of integral proteins
  • CHAPTER 8. PERIMEMBRANOUS MECHANISMS OF SIGNAL TRANSDUCTION AND VESICULAR TRAFFIC
  • 8.1. PERIMEMBRANOUS SIGNALING COMPLEXES
  • 8.1.1. PHOSPHOINOSITIDE-SPECIFIC PROTEIN DOMAINS
  • 8.1.2. PEPTIDE-MEDIATED PROTEIN INTERACTIONS
  • 8.1.3. ACTIVATION OF MARK-SIGNALING CASCADE BY TYROSINEKINASE RECEPTOR
  • 8.2. PERIMEMBRANOUS MECHANISMS GOVERNING MEMBRANE TRAFFIC
  • 8.2.1. THE STAGES OF VESICULAR TRAFFIC
  • 8.2.2. RAB-GTPASES: ORCHESTRATORS OF VESICULAR TRANSPORT
  • 8.3. THE PROTEIN PLATFORM MODEL
  • CHAPTER 9. CHALLENGES AND PERSPECTIVES
  • 9.1. NON-VESICULAR LIPID TRANSPORT
  • 9.2. INTRINSICLY UNFOLDED PROTEINS

Usage statistics

stat Access count: 1
Last 30 days: 0
Detailed usage statistics