Детальная информация

Название: Materials research foundations ;. Metal-organic framework composites. Volume II /. — v. 58.
Другие авторы: Khan Anish
Коллекция: Электронные книги зарубежных издательств; Общая коллекция
Тематика: Coordination polymers.; EBSCO eBooks
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи: on1128266914

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Оглавление

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks
    • 1. Introduction
    • 2. DFT study of site characteristics in MOFs for hydrogen adsorption
    • 3. Grand Canonical Monte Carlo (GCMC) for gravimetric and volumetric uptakes
    • Conclusion
    • Reference
  • 2
    • Metal Organic Frameworks Based Materials for Renewable Energy Applications
    • 1. Introduction
    • 2. Need for renewal energy
    • 3. Metal organic frameworks
    • 4. MOFs for environmental applications and renewable energy
    • 5. Metallic organic framework based materials for hydrogen energy applications
    • 6. Hydrogen Storage by MOFs
    • 7. Storage of gases and separation process by MOFs
    • 8. Metal organic frameworks based materials for conversion and storage of CO2
    • 9. Use of MOFs for biogas
    • 10. Storage of thermal energy using MOF materials
    • 11. Metal organic frameworks based materials for oxygen catalysis
    • 12. MOF based materials for rechargeable batteries and supercapacitors
    • 13. Metal organic framework based materials in the use of dye sensitized solar cells
    • Conclusion
    • References
  • 3
    • Metal Organic Frameworks Composites for Lithium Battery Applications
    • 1. Introduction
    • 2. Applications of MOFs in lithium-ion batteries
    • 3. Applications of MOFs in lithium sulphur batteries.
    • 4. Summary and outlook
    • References
  • 4
    • Metal-Organic-Framework-Quantum Dots (QD@MOF) Composites
      • 1. Introduction
      • 1.1 Metal-organic frameworks
      • 1.2 Quantum dots
      • 1.3 Gold QDs (AuQDs)
    • 2. QD polymeric materials
      • 2.1 Integration of QDs
      • 2.2 Methods of encapsulating QD to polymer matrices
      • 2.3 Incorporation into premade polymers
      • 2.4 Suspension polymerization
      • 2.5 Encapsulation via emulsion polymerization
      • 2.6 Encapsulation via miniemulsion polymerization
    • 3. QD hybrid materials
      • 3.1 Strategies to generate QD hybrid materials
      • 3.2 Exchanging ligand between polymer and QDs
      • 3.3 Polymer grafting to QDs
      • 3.4 Polymer grafting from QDs
      • 3.5 Polymer capping into QDs
      • 3.6 QDs growth within polymer
      • 3.7 Challenges in biocompatible polymer/QDs
    • 4. Applications of QD composites
      • 4.1 Bio-imaging
      • 4.2 Photo-thermal therapies
      • 4.3 Opto-electric applications
      • 4.3.1 QD LEDs
      • 4.3.2 Polymer QD liquid crystal displays
      • 4.3.3 QD polymer photo-voltaic devices
    • 5. Metallic NCs
      • 5.1 Classification of metallic NCs
      • 5.2 Production of metallic NCs
      • 5.2.1 Metallic NCs synthesis methods
      • 5.3 Applications of metallic nano-particles
      • 5.3.1 Silver NCs
      • 5.3.2 Pbs QDs
    • Conclusion
    • References
  • 5
    • Designing Metal-Organic-Framework for Clean Energy Applications
    • 1. Introduction
      • 1.1 Introduction to MOF Composites & Derivatives
      • 1.2 Chemistry of MOFs
    • 2. Applications of MOF in clean energy
      • 2.1 Hydrogen Storage
      • 2.2 Carbon dioxide capture
      • 2.3 Methane storage
      • 2.4 Electrical energy storage and conversion
      • 2.4.1 Fuel cell
      • 2.5 MOFs for supercapacitor applications
      • 2.6 NH3 removal
      • 2.7 Benzene removal
      • 2.8 NO2 removal
      • 2.9 Photocatalysis
    • Conclusion
    • References
  • 6
    • Nanoporous Metal-Organic-Framework
    • 1. Introduction
      • 1.1 Fundamental stabilities of nano MOFs
      • 1.1.1 Chemical stability
      • 1.1.2 In water medium
      • 1.1.3 In acid/base condition
      • 1.1.4 Thermal Stability
      • 1.1.5 Mechanical Stability
      • 1.2 Synthesis
      • 1.2.1 Modulated synthesis
      • 1.2.2 Post-synthetic modification (PSM)
      • 1.3 Applications of MOFs
      • 1.3.1 Gas separations and storage
      • 1.3.2 Catalysis
      • 1.3.2.1 Lewis acid catalysis
      • 1.3.2.2 Bronsted acid catalysis
      • 1.3.2.3 Redox Catalysis
      • 1.3.2.4 Photocatalysis
      • 1.3.2.5 Electrocatalysis
      • 1.3.3 Water treatment
      • 1.4 Other applications
      • 1.4.1 Sensors
      • 1.4.2 Supercapacitors
      • 1.4.3 Biomedical applications
    • Conclusion
    • References
  • 7
    • Metal-Organic-Framework-Based Materials for Energy Applications
    • 1. Introduction
      • 1.1 Role of MOF in supercapacitor
      • 1.2 Role of MOF in oxygen evolution reaction (OER)
    • 2. Synthesis of Ni3(HITP)2 MOF
    • 3. Characterization of Ni3(HITP)2 MOF
    • 4. Ni3(HITP)2MOF as supercapacitor electrode for EDLC :
    • 5. Two electrode measurements
    • 6. Electrochemical impedance (EIS) measurements
    • 7. Device performance
    • 8. Hybrid Co3O4C nanowires electrode for OER process
    • 9. Synthesis of hybrid Co3O4C nanowires
    • 10. Characterization of hybrid Co3O4C nanowires
    • 11. Hybrid Co3O4C nanowires MOF electrode for oxygen evolution reaction
    • Conclusion
    • References
  • 8
    • Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications
    • 1. Introduction
    • 2. MOFs: Structure, properties and strategies for SCs
    • 3. Single-metal MOFs
    • 4. Bimetal or doped MOFs
    • 5. Hybrids and composites
    • 6. Flexible or freestanding SCs
    • Conclusion and Perspectives
    • References
  • 9
    • Metal-Organic Frameworks and their Therapeutic Applications
    • 1. Introduction
    • 2. Metal-organic frameworks
      • 2.1 Usage areas of metal-organic frameworks
      • 2.1.1 Controlled drug release
      • 2.1.2 Antibacterial activity of MOFs
      • 2.1.3 Biomedicine
      • 2.1.4 Chemical sensors
    • Conclusions and recommendations
    • References
  • 10
    • Significance of Metal Organic Frameworks Consisting of Porous Materials
    • 1. Introduction
      • 1.1 Definition of porosity
    • 2. Inferences obtained from the wide range of relevant research articles
      • 2.1 Introduction to porous MOFs
      • 2.2 Zeolites – an amorphous & inorganic porous material
      • 2.3 Activated carbon – an organic porous material
      • 2.4 Formation of pores in MOFs
      • 2.5 Types of pores
      • 2.6 Characterization of porous MOFs
      • 2.7 Checking for permanent porosity
      • 2.8 Advantages of MOF porous materials
      • 2.9 Porous MOFs in separation of gases
      • 2.10 Nanoporous MOFs
    • Conclusion
    • References
  • 11
    • Metal Organic Frameworks (MOF’s) for Biosensing and Bioimaging Applications
    • 1. Introduction
    • 2. In vitro MOF complex sensors
      • 2.1 DNA-RNA-MOF complex sensor
      • 2.2 Enzyme-MOF complex
      • 2.2.1 Enzymatic-MOF complex
      • 2.2.2 Non-enzymatic-MOF complex
      • 2.3 Fluorescent-MOF complex
    • 3. In-vivo MOF complex sensors
      • 3.1 MR complex
      • 3.2 CT complex
    • Conclusions and recommendations
    • References
  • 12
    • Nanoscale Metal Organic Framework for Phototherapy of Cancer
    • 1. Introduction
    • 2. Nanoscience and nanotechnology
      • 2.1 Tumor ablation and nanotechnology in cancer treatment
    • 3. Metal organic frameworks (MOFs)
    • 4. Photothermal therapy (PTT)
    • 5. Photodynamic therapy (PDT)
    • 6. Historical development of phototherapy
    • 7. Mechanism of phototherapy
      • 7.1 Basic elements of photodynamic therapy
      • 7.1.1 Singlet oxygen
      • 7.1.2 Light sources
    • 8. Photosensitizers (PSs)
      • 8.1 First generation photosensitizers
      • 8.2 Second generation photosensitizers
      • 8.3 Third generation photosensitizers
      • 8.4 Introduction of tumor cells and intracellular localization of photosensitizer
    • 9. Cell death in phototherapy
    • 10. nMOFs for PDT
    • 11. nMOFs for PTT
      • 11.1 Surface plasmon resonance (SPR) mechanism and plasmonic photothermal treatment (PPTT) method
      • 11.1.1 Mie theory
      • 11.1.2 Gold nanostructures
      • 11.1.3 Photothermal properties of different gold nanostructures
      • 11.1.4 Gold nanospheres used in photothermal therapy
      • 11.1.5 Gold nanocages and nanorods used in photothermal therapy
      • 11.1.6 Bioconjugation of gold nanostructures used in photothermal therapy
      • 11.1.7 Determination of temperature changes in gold surface
    • 12. Results and Perspectives
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Статистика использования

stat Количество обращений: 1
За последние 30 дней: 1
Подробная статистика