Детальная информация

Название: Princeton series in physics. The Large-Scale Structure of the Universe
Авторы: Peebles P. J. E.
Коллекция: Электронные книги зарубежных издательств; Общая коллекция
Тематика: Galaxies.; Large scale structure (Astronomy); Cosmology.; SCIENCE / Physics / Astrophysics.; Cosmology; Cosmologie.; Kosmologie.; Galaxias.; EBSCO eBooks
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи: on1196193356

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

The classic account of the structure and evolution of the early universe from Nobel Prize-winning physicist P. J. E. PeeblesAn instant landmark on its publication, The Large-Scale Structure of the Universe remains the essential introduction to this vital area of research. Written by one of the world's most esteemed theoretical cosmologists, it provides an invaluable historical introduction to the subject, and an enduring overview of key methods, statistical measures, and techniques for dealing with cosmic evolution. With characteristic clarity and insight, P. J. E. Peebles focuses on the largest known structures--galaxy clusters--weighing the empirical evidence of the nature of the clustering and the theories of how the clustering evolves in an expanding universe. A must-have reference for students and researchers alike, this edition of The Large-Scale Structure of the Universe introduces a new generation of readers to a classic text in modern cosmology.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Оглавление

  • Cover
  • Title
  • Copyright
  • Dedication
  • CONTENTS
  • PREFACE
  • ACKNOWLEDGMENTS
  • I. HOMOGENEITY AND CLUSTERING
    • 1. Homogeneity and clustering
    • 2. Is the universe homogeneous?
    • 3. Physical principles
    • 4. How did galaxies and clusters of galaxies form?
    • 5. Summary
  • II. BEHAVIOR OF IRREGULARITIES IN THE DISTRIBUTION OF MATTER: NEWTONIAN APPROXIMATION
    • 6. Newtonian approximation
    • 7. Particle dynamics in expanding coordinates
    • 8. The peculiar acceleration
    • 9. Two models: the Vlasov equation and the ideal fluid
    • 10. Linear perturbation approximation for δ
    • 11. Solutions for δ(t): p – Λ – 0
    • 12. Solutions for δ(t): effect of a uniform radiation background
    • 13. Solutions for δ(t): models with Λ ≠ 0
    • 14. The peculiar velocity field
    • 15. Joining conditions for δ and υ
    • 16. Critical Jeans length
    • 17. Primeval magnetic field as a source for δp / p
    • 18. Second order perturbation theory for δp / p
    • 19. Spherical model
    • 20. Homogeneous ellipsoid model
    • 21. Caustics and pancakes
    • 22. Expansion, vorticity, and shear
    • 23. Origin of the rotation of galaxies
    • 24. Cosmic energy equation
    • 25. Spherical accretion model
    • 26. Hierarchical clustering model
    • 27. Fourier transform of the equations of motion
    • 28. Coupling of density fluctuations
  • III. n-POINT CORRELATION FUNCTIONS: DESCRIPTIVE STATISTICS
    • 29. Statistical measures of the galaxy distribution
    • 30. Fair sample hypothesis
    • 31. Two-point spatial correlation function ξ(r)
    • 32. Two-point correlation function: another definition
    • 33. Two-point correlation function: Poisson model
    • 34. Three-point correlation function
    • 35. Four-point correlation function
    • 36. Moments of counts of objects
    • 37. Constraints on ξ and ζ
    • 38. Probability generating function
    • 39. Estimates of PN
    • 40. Cluster model
    • 41. Power spectrum
    • 42. Power law model for the spectrum
    • 43. Bispectrum
    • 44. Cross correlation function
    • 45. Angular two-point correlation function
    • 46. Angular power spectrum
    • 47. Estimating w(θ)
    • 48. Statistical uncertainty in the estimate of w(θ)
    • 49. Relation between angular and spatial two-point correlation functions
    • 50. Small separation approximation and the scaling relation
    • 51. Decoupling of magnitude and position
    • 52. Relation between ξ land w: some examples
    • 53. Inversion of the equation
    • 54. Angular three-point correlation function
    • 55. Angular four-point correlation function
    • 56. Correction for curvature and expansion
    • 57. Summary of numerical results
    • 58. Power spectrum of the extragalactic light
    • 59. Moments of the number of neighbors
    • 60. Model for PN
    • 61. Clustering models
    • 62. Continuous clustering hierarchy: Mandelbrot’s prescription
    • 63. The mass correlation functions
    • 64. Clustering hierarchy: continuity speculation
    • 65. Remarks on the observations
  • IV. DYNAMICS AND STATISTICS
    • 66. Goals
    • 67. Definitions of variables and distribution functions
    • 68. BBGKY hierarchy equations
    • 69. Fluid limit
    • 70. Evolution of the integral of ξ
    • 71. Particle conservation equations
    • 72. Relative peculiar velocity dispersion
    • 73. Similarity solution
    • 74. Cosmic energy equation
    • 75. Cosmic virial theorem
    • 76. Joint distribution in position and velocity
    • 77. Behavior of the halo around a cluster of galaxies
    • 78. Superclusters
    • 79. Problems and prospects
  • V. RELATIVISTIC THEORY OF THE BEHAVIOR OF IRREGULARITIES IN AN EXPANDING WORLD MODEL
    • 80. Role of the relativistic theory
    • 81. Time-orthogonal coordinates
    • 82. The field equations for hαβ
    • 83. Gravitational waves
    • 84. Newtonian approximation
    • 85. Linear perturbation equations for the matter
    • 86. Behavior of density perturbations at wavelength » ct
    • 87. Spherical model
    • 88. Evolution of acoustic waves
    • 89. Nonlinear acoustic waves
    • 90. Incompressible flow
    • 91. Behavior of collisionless particles
    • 92. Linear dissipation of adiabatic perturbations
    • 93. Residual fluctuations in the microwave background
    • 94. Isothermal perturbations
  • VI. SCENARIOS
    • 95. Nature of the universe at high redshift
    • 96. Nature of protogalaxies and protoclusters
  • APPENDIX
    • 97 . Models and notation
  • LIST OF ABBREVIATIONS
  • REFERENCES
  • INDEX

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика