Details

Title: Plasma atomic physics
Creators: Rosmej Frank B.; Astapenko Valery A.; Lisitsa Valery S.
Imprint: Cham: Springer, 2021
Collection: Электронные книги зарубежных издательств; Общая коллекция
Subjects: Плазма (физ.); Атомная физика
UDC: 533.9; 539.18
Document type: Other
File type: PDF
Language: English
Rights: Доступ по паролю из сети Интернет (чтение)
Record key: RU\SPSTU\edoc\69830

Allowed Actions:

Action 'Read' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers'interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the “Plasma Atom”, where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density.Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read
Internet Authorized users Read
-> Internet Anonymous

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics