Details

Title Trends in deep learning methodologies: algorithms, applications, and systems
Creators Piuri Vincenzo; Raj Sandeep; Genovese Angelo; Srivastava Rajshree
Imprint Amsterdam: Academic Press, 2021
Collection Электронные книги зарубежных издательств; Общая коллекция
Subjects Искусственный интеллект; глубокое обучение
UDC 004.8
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение)
Record key RU\SPSTU\edoc\69912
Record create date 1/26/2023

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Group Anonymous
Network Internet

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Provides insights into the theory, algorithms, implementation and the application of deep learning techniques Covers a wide range of applications of deep learning across smart healthcare and smart engineering Investigates the development of new models and how they can be exploited to find appropriate solutions.

Network User group Action
ILC SPbPU Local Network All
Read
Internet Authorized users SPbPU
Read
Internet Anonymous

Access count: 0 
Last 30 days: 0

Detailed usage statistics