С 17 марта 2020 г. для ресурсов (учебные, научные, материалы конференций, статьи из периодических изданий, авторефераты диссертаций, диссертации) ЭБ СПбПУ, обеспечивающих образовательный процесс, установлен особый режим использования. Обращаем внимание, что ВКР/НД не относятся к этой категории.

Details

Title: Робастные алгоритмы классификации данных, полученные группой роботов, с использованием множеств весов // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Сер.: Информатика. Телекоммуникации. Управление: научное издание. – 2019. – Т. 12, № 1
Creators: Попов Сергей Геннадьевич; Уткин Лев Владимирович; Заборовский Владимир Сергеевич
Organization: Санкт-Петербургский политехнический университет Петра Великого
Imprint: Санкт-Петербург: Изд-во Политехн. ун-та, 2019
Collection: Общая коллекция
Subjects: Радиоэлектроника; Искусственный интеллект. Экспертные системы; роботы; модель Дирихле; Дирихле модель; робастные алгоритмы; группы роботов; электромагнитный анализ; синтезаторы частот; robots; Dirichlet model; model Dirichlet; robust algorithms; group of robots; electromagnetic analysis; frequency synthesizers
UDC: 004.8
LBC: 32.813
Document type: Article, report
Language: Russian
DOI: 10.18721/JCSTCS.12105
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)

Allowed Actions: Read

Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Предложено три адаптивных робастных алгоритма обучения системы группы роботов при условии, что каждое наблюдение, полученное роботами, является многозначным, состоящим из нескольких элементов. Причина многозначных данных заключается в том, что роботы в системе предоставляют различные измерения в качестве одного наблюдения или в один момент времени. В основе алгоритмов – множества весов или интервальные веса определенного вида для всех элементов обучающего множества. Кроме того, для формализации многозначных данных и модификации весов в процессе получения новых данных рекомендовано использование интервальной модели Дирихле. Первый алгоритм – это модификация метода опорных векторов, учитывающая многозначные данные. Второй алгоритм – модификация алгоритма AdaBoost для многозначных данных. Третий алгоритм – комбинация AdaBoost и интервальной модели Дирихле. Все алгоритмы являются робастными и используют минимаксную стратегию принятия решений.

Proposed three adaptive robust learning algorithm of the system of group of robots under the condition that each observation received by the robot, is multi-valued, consisting of several elements. The reason for the multivalued data is that the system works by providing different dimensions as a single observation or at a single point in time. The algorithms are based on sets of weights or interval weights of a certain type for all elements of the training set. In addition, the use of the Dirichlet interval model is recommended for the formalization of multivalued data and modification of weights in the process of obtaining new data. The first algorithm is a modification of the support vector machine that takes into account multivalued data. The second algorithm is a modification of the AdaBoost algorithm for multivalued data. The third algorithm is a combination of AdaBoost and the Dirichlet interval model. All algorithms are robust and use a minimax decision-making strategy.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous Read

Usage statistics

stat Access count: 108
Last 30 days: 3
Detailed usage statistics