Details

Title: Nonlinear deformation and stability of geometrically exact elastic arches // Инженерно-строительный журнал. – 2019 № 5 (89)
Creators: Lalin V. V.; Dmitriev A. N.; Diakov S. F.
Imprint: 2019
Collection: Общая коллекция
Subjects: Строительство; Строительная механика; elastic arches; stability of arches; nonlinear deformation; geometric deformation; circular arches; stiffness of arches; double-hinged arches; упругие арки; устойчивость арок; нелинейное деформирование; геометрическое деформирование; круговые арки; жесткость арок; двухшарнирные арки
UDC: 624.04
LBC: 38.112
Document type: Article, report
File type: PDF
Language: English
DOI: 10.18720/MCE.89.4
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)

Allowed Actions: Read Download (1.2 Mb)

Group: Anonymous

Network: Internet

Annotation

In the present paper a plane round double-hinged arch under the potential dead load is investigated. To describe the stress-strain state and the equilibrium stability the geometrically exact theory is used. According to this theory every point of the bar has two translational degrees of freedom and one rotational, which is independent from the previous two. To solve the problem no displacements are simplified and all the stiffnesses are used: axial, shear and bending. Exact nonlinear differential equations are found for the static problem. A variational definition for the problem is defined as finding a stationary point of Lagrange functional. The match of the differential and variational formulations is shown. Exact stability equations accounting non-linear geometric deformations in pre-buckling state were worked out. The problem of the equilibrium stability of the round arch under the potential dead load was solved using the obtained equations regarding all the bar’s stiffnesses. The characteristic transcendental equation and its asymptotic solution as simple formulas, suitable for practical application, were worked out. The comparison of described solution which regards all the bar’s stiffnesses and classical solution, based on bending stiffness, was made.

В статье рассматривается плоская круговая двухшарнирная арка, нагруженная потенциальной "мертвой" нагрузкой. Для описания напряженно-деформированного состояния и устойчивости равновесия используется геометрически точная теория, в соответствии с которой каждая точка стержня имеет две трансляционные степени свободы и одну вращательную, не зависящую от трансляционных. Для получения решения не используются никакие упрощения о величинах перемещений и углов поворота, а также учитываются все жесткости стержня – продольная, сдвиговая и изгибная. Получены точные нелинейные дифференциальные уравнения статической задачи. Сформулирована вариационная постановка в виде задачи поиска точки стационарности функционала типа Лагранжа. Доказана эквивалентность дифференциальной и вариационной постановок. Получены точные уравнения устойчивости, учитывающие геометрически нелинейное деформирование в докритическом состоянии. На основе полученных уравнений решена задача устойчивости равновесия круговой арки при действии "мертвого" радиального давления с учетом всех жесткостей стержня. Получено характеристическое трансцендентное уравнение, а также асимптотическое решение этого уравнения в виде простых формул, пригодных для практического применения. Выполнено сравнение полученного решения, учитывающего все жесткости стержня, с классическим решением, учитывающим только изгибную жесткость.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
-> Internet All Read Print Download

Table of Contents

  • Nonlinear deformation and stability of geometrically exact elastic arches
    • 1. Introduction
    • 2. Methods
    • 3. Results and Discussion
      • 3.1. Variational formulation of non-linear static problem
      • 3.2. Stability problem formulation
      • 3.3. Solving the problem of arch equilibrium stability
    • 4. Conclusions
  • Геометрически нелинейное деформирование и устойчивость упругих арок

Usage statistics

stat Access count: 45
Last 30 days: 9
Detailed usage statistics