Детальная информация

Название: Magazine of Civil Engineering. — № 1 (109)
Организация: Санкт-Петербургский политехнический университет Петра Великого
Выходные сведения: Санкт-Петербург: СПбПУ, 2022
Коллекция: Общая коллекция
Тематика: Строительство; Сопротивление материалов; Строительная механика; Строительные материалы
УДК: 624.04(051); 69(051); 539.3/.6(051)
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Свободный доступ из сети Интернет (чтение, печать, копирование)
Ключ записи: RU\SPSTU\edoc\68008

Разрешенные действия: Прочитать Загрузить (19,6 Мб)

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
-> Интернет Все Прочитать Печать Загрузить

Оглавление

  • title109
  • реклама1
  • index
    • E-mail: mce@spbstu.ru
    • Web: http://www.engstroy.spbstu.ru
    • Contents
  • 01
    • Effect of elastomer polymer on the moisture susceptibility of asphalt concrete
      • 1. Introduction
      • 1.1. Previous studies
      • 1.2. SFE theory
      • 1.3. Problem statement and research objectives
      • 2. Methods
        • 2.1. Designing an experimental program
        • 2.2. Materials
        • 2.2.1. Aggregate
        • 2.2.2. Asphalt binder
        • 2.2.3. SBR polymer
        • 2.3. Laboratory Studies
        • 2.3.1. Asphalt binder modification
        • 2.3.2. Mix design
        • 2.3.3. Repetitive loading test
        • 2.3.4. Measuring the SFE components of aggregate and asphalt binder
        • 2.3.4.1. Measuring the SFE components of aggregates
        • 2.3.4.2. Measuring SFE components of asphalt binder
      • 3. Results and Discussion
        • 3.1. Mix design
        • 3.2. SFE tests
        • 3.2.1. Measuring the SFE components of aggregates
        • 3.2.2. Measuring the SFE components of asphalt binders
        • 3.2.3. Thermodynamic parameters
        • 3.3. Repetitive loading tests
        • 3.4. Stripping percentage of the aggregates in loading cycles
      • 4. Conclusions
  • 02
    • Deformation criteria for reinforced concrete frames under accidental actions
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
        • 3.1. Static-dynamic tests
        • 3.2. Quasi-static tests
      • 4. Conclusions
  • 03
    • Mathematical modelling of hydraulics and water quality characteristics for small dam maintenance
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
        • 3.1. Study Area
        • 3.2. Model Calibration and Accuracy
        • 3.3. Model Scenario
      • 4. Conclusion
      • 5. Acknowledgement
  • 04
    • 1. Introduction
    • 2. Methods
      • 2.1. Material
      • 2.2. Mixing Proportion And Specimens Tests
      • 2.3. Composite Slab Details, Casting, Compaction, and Curing
      • 2.4. Composite Slabs Tests
    • 3. Results and Discussion
      • 3.1. Short Term Tests
      • 3.2. Time – Depended Test
    • 4. Conclusions
  • 05
    • The shear behavior of Anchored CFRP Strengthened RC beams
      • 1. Introduction
      • 2. Methods
        • 2.1. Experimental Work Review
        • 2.2. Description of Non-linear Finite Element Analysis (NLFEA)
        • 2.3. Validation Process
      • 3. Results and Discussion
        • 3.1. Failure Mode
        • 3.2. Load-deflection behavior
        • 3.3. Concrete compressive strain
        • 3.4. CFRP tensile strain
        • 3.5. Steel tensile strain
        • 3.6. Crack opening behavior
        • 3.7. Comparison of NLFEA with theoretical models
      • 4. Conclusions
  • 06
    • Factors and mechanisms of nanomodification cement systems in the technological life cycle
      • 1. Introduction
      • 2. Methods
      • 3. Results0F
        • 3.1. Analysis of the kinetics patterns of heterogeneous processes of solid phase formation in cement systems
        • 3.2. The particle generation process of hydration products
        • 3.3. The growth and accumulation stage of the particles of hydration products
        • 3.4. Agglomeration stages of the particle of hydration products
        • 3.5. The stage of spontaneous structure formation of hydration products
        • 3.6. The nanomodification of the structure of the cement system from the point of view of the fracture mechanics
      • 4. Discussion
      • 5. Conclusions
      • 6. Acknowledgement
  • 07
    • Humidity regime in aerated concrete wall with finishing coating
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
  • 08
    • Influence of cement type and chemical admixtures on the durability of recycled concrete aggregates
      • 1. Introduction
      • 2. Experimental program
        • 2.1. Materials and testing methods
        • 2.1.3. Chemical admixtures
        • 2.2. Testing methods
      • 3. Results and Discussion
        • 3.1. Evolution of density and porosity accessible to water
        • 3.2. Evolution of the diffusion of chloride ions
        • 3.3. Relationship between the durability parameters
          • 3.3.1. Relationship between the density and porosity
          • 3.3.2. Relationship between the diffusion depth of chloride ions and density
          • 3.3.3. Relationship between the diffusion depth of chloride ions and porosity
      • 4. Conclusions
  • 09
    • Effect of ferronickel slag in concrete and mortar
      • 1. Introduction
      • 2. Materials and methods
        • 2.1. Aggregates
        • 2.2. Ferronickel slag and cement
        • 2.3. Grinding process and particle size distribution
        • 2.4. Superplasticizer
        • 2.5. Mixtures proportions and mixing procedure
        • 2.6. Heat treatment
        • 2.7. Frattini test
        • 2.8. Workability and compressive strength
      • 3. Results and Discussion
        • 3.1. Particle size distribution of different binders
        • 3.2. Workability
        • 3.3. Compressive strength of concrete
        • 3.4. Compressive strength of mortar
        • 3.4.1. Effect of fineness of FNS as cement replacement
        • 3.4.2. Effect of heat curing
        • 3.5. Frattini test
        • 3.6. Microstructure observation
      • 4. Conclusions
      • 5. Acknowledgements
  • 10
    • Algorithm for building structures optimization based on Lagrangian functions
      • 1. Introduction
      • 2. Methods
        • 2.1. Direct method for solving the problem NLP
      • 3. Results and Discussion
        • 3.1. Combined method for solving the problem NLP
        • 3.2. Algorithm for solving conditional-extreme problems for NLP using the combined method
        • 3.3. Illustration of the proposed algorithm
      • 4.1 Testing the proposed algorithm
      • 4. Conclusions
  • 11
    • The strength of fly ash concrete of experimental design
      • 1. Introduction
      • 2. Materials and methods
        • 2.1. Design of experiment
        • 2.2. Experimental materials
        • 2.3. Mix design
        • 2.4. Experiment
      • 3. Results and Discussion
        • 3.1. Experimental results
        • 3.2. Discuss the results
        • 3.3. Response optimization to determine the best possible combinations for each grade of concrete
      • 4. Conclusions
      • 5. Conflict of interests
  • 12
    • Target reliability of alternative fundamental combinations in Eurocode EN1990
      • 1. Introduction
      • 2. Methods
        • 2.1. Evaluation of statistical parameters for imposed loads
      • 3. Results and Discussion
        • 3.1. Case 1: distribution of effects represented by alternative load combinations
        • 3.1.1. Evaluation of ( reliability index for normal variables
        • 3.1.2. Evaluation of reliability index for log-normal variables
        • 3.2. Case 2: effects of actions represented by the theoretical combination
        • 3.2.1. Evaluation of reliability index
        • 3.3. Case 3: Level 3 sensitivity analysis
      • 4. Conclusions
  • 13
    • Different types of basalt fibers for disperse reinforcing of fine-grained concrete
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
  • 14
    • Fibers reinforcement of the fissured clayey soil by desiccation
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Soil Properties
        • 2.2. Fibers Properties
        • 2.3. Tensile Experience
        • 2.4. Desiccation tests
      • 3. Results and Discussions
        • 3.1. Tensile strength for nonreinforced soil: Effect of drying path
        • 3.2. Experimental results of Tensile strength for reinforced soil
        • 3.3. Modeling of the tensile strength of reinforced specimens
        • 3.4. Role of fibers in Cracks development
      • 4. Conclusions
  • 15
    • Lightweight concrete for 3D-printing with internal curing agent for Portland cement hydration
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
      • 5. Acknowledgement
  • реклама2
  • оборот

Содержит

Статистика использования

stat Количество обращений: 121
За последние 30 дней: 18
Подробная статистика