Детальная информация

Название Algorithm for building structures optimization based on Lagrangian functions // Magazine of Civil Engineering. – 2022. – № 1 (109). — С. 10910
Авторы Dmitrieva T. L. ; Ulambayar Kh.
Выходные сведения 2022
Коллекция Общая коллекция
Тематика Строительство ; Строительная механика ; building structures ; Lagrange functions ; functions Lagrange ; optimal building structures ; girder structures ; steel girder structures ; строительные конструкции ; функции Лагранжа ; Лагранжа функции ; оптимальные строительные конструкции ; балочные конструкции ; стальные балочные конструкции
УДК 624.04
ББК 38.112
Тип документа Статья, доклад
Тип файла PDF
Язык Английский
DOI 10.34910/MCE.109.10
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\68019
Дата создания записи 28.03.2022

Разрешенные действия

Прочитать Загрузить (1,5 Мб)

Группа Анонимные пользователи
Сеть Интернет

A review of modern algorithms and optimization programs is presented, based on which it is concluded that there is no application software in the field of optimal design of building structures. As part of solving this problem, the authors proposed numerical optimization algorithms based on conditionally extreme methods of mathematical programming. The problem of conditional minimization is reduced to a problem of an unconditional extreme using two modified Lagrange functions. The advantage of the proposed methodology is a wide range of convergence, the absence of requirements for convexity of functions on an admissible set of variation parameters, as well as high convergence, which can be achieved by adjusting the parameters of the objective and constraint functions. Verification of the developed methodology was carried out by solving a well-known example of ten-bar truss optimization. A comparison of the results obtained by other sources with the copyright ones confirmed the effectiveness of the presented algorithms. As an example, the problems of optimizing the cross-section of a steel beam have also been solved. Automation of the algorithms is performed in mathematical package MathCAD, which allows you to visually trace the sequence of commands, as well as obtain graphs that reflect the state of the task at each iteration. Thus, the authors obtained an original methodology for solving the optimization problem of flat bar structures, which can be extended to solve the problem of optimal design of general structures, where the optimality criterion is defined as material consumption, and the given structural requirements are presented as constraint functions.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все
  • Algorithm for building structures optimization based on Lagrangian functions
    • 1. Introduction
    • 2. Methods
      • 2.1. Direct method for solving the problem NLP
    • 3. Results and Discussion
      • 3.1. Combined method for solving the problem NLP
      • 3.2. Algorithm for solving conditional-extreme problems for NLP using the combined method
      • 3.3. Illustration of the proposed algorithm
    • 4.1 Testing the proposed algorithm
    • 4. Conclusions

Количество обращений: 410 
За последние 30 дней: 110

Подробная статистика