Details

Title: Thermal conductivity of granular insulation in conditions of soil freezing // Magazine of Civil Engineering. – 2021. – № 8 (108). — С. 10814
Creators: Ivanov K. S.
Imprint: 2021
Collection: Общая коллекция
Subjects: Строительство; Строительство в особых условиях; soil freezing; granular insulation; thermal conductivity of granular insulation; frozen soils; protection against freezing of soils; glass ceramics; промерзание грунтов; гранулированная изоляция; теплопроводность гранулированной изоляции; мерзлые грунты; защита от промерзания грунтов; стеклокерамика
UDC: 624.12/14
LBC: 38.79
Document type: Article, report
File type: PDF
Language: English
DOI: 10.34910/MCE.108.14
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)
Record key: RU\SPSTU\edoc\68002

Allowed Actions: Read Download (372 Kb)

Group: Anonymous

Network: Internet

Annotation

Thermal insulation materials are widely used in engineering practice to reduce the depth of seasonal freezing. The effective thermal conductivity of the material is the main criterion for predicting the freezing depth of the structure base and determining the required thickness of the thermal insulation layer. However, the effective thermal conductivity of granular thermal insulation materials can significantly depend on the seasonal temperature, hydrological conditions of the soil and the degree of water content of the material. In this regard, calculating the effective thermal conductivity of granular thermal insulation materials in natural conditions is an urgent scientific and practical task. Granular foam-glass ceramic with a bulk density of 250 kg/m{3} was used in the study. To solve the problem, we employed an experimental set to simulate the natural conditions of heat transfer in a horizontal layer, which makes it possible to change the magnitude and direction of the temperature gradient. It was established that the magnitude and direction of the temperature gradient have no significant influence on the layer of granules with a size of 5–10 mm. A predictive calculation of the temperature fields of the roadbed using experimental values depending on the water content degree was carried out. It was found that the depth of freezing of the roadbed covered with a 20 cm layer of foam-glass ceramic with effective thermal conductivity of 0.075, 0.111 and 0.138 W/(m C), respectively, is 12, 3.8 and 3 times lower than without the thermal insulation layer. A graphical interpretation of the temperature field in the form of -2 C isotherms shows that there is a dangerous zone of intense frost heaving with a depth of 58 cm forming at the roadbed without thermal insulation. Complete absence of zones of intense frost heaving in the roadbed covered with granular foam-glass ceramic was confirmed.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
-> Internet All Read Print Download

Table of Contents

  • Thermal conductivity of granular insulation in conditions of soil freezing
    • 1. Introduction
    • 2. Methods
    • 3. Results and Discussion
      • 3.1. Laboratory thermal conductivity test
      • 3.2. Mathematical modeling
    • 4. Conclusion
    • 5. Acknowledgments

Usage statistics

stat Access count: 166
Last 30 days: 16
Detailed usage statistics